人脸识别经典算法二:LBP方法

第一篇博文特征脸方法不同,LBP(Local Binary Patterns,局部二值模式)是提取局部特征作为判别依据的。LBP方法显著的优点是对光照不敏感,但是依然没有解决姿态和表情的问题。不过相比于特征脸方法,LBP的识别率已经有了很大的提升。在[1]的文章里,有些人脸库的识别率已经达到了98%+。


1、LBP特征提取

最初的LBP是定义在像素3x3邻域内的,以邻域中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3x3邻域内的8个点经比较可产生8位二进制数(通常转换为十进制数即LBP码,共256种),即得到该邻域中心像素点的LBP值,并用这个值来反映该区域的纹理信息。如下图所示:



用比较正式的公式来定义的话:


其中代表3x3邻域的中心元素,它的像素值为ic,ip代表邻域内其他像素的值。s(x)是符号函数,定义如下:



LBP的改进版本

(1)圆形LBP算子

基本的 LBP算子的最大缺陷在于它只覆盖了一个固定半径范围内的小区域,这显然不能满足不同尺寸和频率纹理的需要。为了适应不同尺度的纹理特征,并达到灰度和旋转不变性的要求,Ojala等对 LBP 算子进行了改进,将 3×3邻域扩展到任意邻域,并用圆形邻域代替了正方形邻域,改进后的 LBP 算子允许在半径为 R 的圆形邻域内有任意多个像素点。从而得到了诸如半径为R的圆形区域内含有P个采样点的LBP算子。比如下图定了一个5x5的邻域:


上图内有八个黑色的采样点,每个采样点的值可以通过下式计算:


其中为邻域中心点,为某个采样点。通过上式可以计算任意个采样点的坐标,但是计算得到的坐标未必完全是整数,所以可以通过双线性插值来得到该采样点的像素值:



(2)LBP等价模式

一个LBP算子可以产生不同的二进制模式,对于半径为R的圆形区域内含有P个采样点的LBP算子将会产生2^P种模式。很显然,随着邻域集内采样点数的增加,二进制模式的种类是急剧增加的。例如:5×5邻域内20个采样点,有220=1,048,576种二进制模式。如此多的二值模式无论对于纹理的提取还是对于纹理的识别、分类及信息的存取都是不利的。同时,过多的模式种类对于纹理的表达是不利的。例如,将LBP算子用于纹理分类或人脸识别时,常采用LBP模式的统计直方图来表达图像的信息,而较多的模式种类将使得数据量过大,且直方图过于稀疏。因此,需要对原始的LBP模式进行降维,使得数据量减少的情况下能最好的代表图像的信息。

        为了解决二进制模式过多的问题,提高统计性,Ojala提出了采用一种“等价模式”(Uniform Pattern)来对LBP算子的模式种类进行降维。Ojala等认为,在实际图像中,绝大多数LBP模式最多只包含两次从10或从01的跳变。因此,Ojala将“等价模式”定义为:当某个LBP所对应的循环二进制数从01或从10最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。除等价模式类以外的模式都归为另一类,称为混合模式类,例如10010111(共四次跳变)。比如下图给出了几种等价模式的示意图。



       通过这样的改进,二进制模式的种类大大减少,而不会丢失任何信息。模式数量由原来的2P种减少为 P ( P-1)+2种,其中P表示邻域集内的采样点数。对于3×3邻域内8个采样点来说,二进制模式由原始的256种减少为58种,这使得特征向量的维数更少,并且可以减少高频噪声带来的影响。这几段摘自[2]。


通过上述方法,每个像素都会根据邻域信息得到一个LBP值,如果以图像的形式显示出来可以得到下图,明显LBP对光照有较强的鲁棒性。



2、LBP特征匹配

如果将以上得到的LBP值直接用于人脸识别,其实和不提取LBP特征没什么区别,会造成计算量准确率等一系列问题。文献[1]中,将一副人脸图像分为7x7的子区域(如下图),并在子区域内根据LBP值统计其直方图,以直方图作为其判别特征。这样做的好处是在一定范围内避免图像没完全对准的情况,同时也对LBP特征做了降维处理。


对于得到的直方图特征,有多种方法可以判别其相似性,假设已知人脸直方图为Mi,待匹配人脸直方图为Si,那么可以通过:

(1)直方图交叉核方法


该方法的介绍在博文:Histogram intersection(直方图交叉核,Pyramid Match Kernel)

(2)卡方统计方法


该方法的介绍在博文:卡方检验(Chi square statistic)



参考文献:

[1]Timo Ahonen, Abdenour Hadid:Face Recognition with Local Binary Patterns

[2]目标检测的图像特征提取之(二)LBP特征

随着计算机和信息技术的快速发展,人脸识别技术越来越受到重视,本文主要研究了人脸在不同光照、不同表情下的特征提取与识别的一些关键问题,提出了一些改进方法,并通过实验进行了可靠性验证. 针对LBP算法提取人脸图像的表情特征信息时会丢失特殊的特征信息的缺点,本文提出了多重局部值模式的人脸表情识别方法(Multiple Local Binary Patterns,MILBP),该方法在保持LBP算法优点的前提下,通过增加一位值编码,利用中心像素点作用以及邻域像素点灰度值之间的关系,得出特征向量图. 实验结果表明MLBP算法LBP算法描述的表情纹理图像更加均匀,且识别率约提高10%. 针对人脸表情图像进行纹理特征提取时的模块大小划分问题,本文提出将MLBP算法与Harr小波分解相结合,该方法首先将表情图像进行Har小波分解,得到四幅不同频率的子图像,然后对其中三幅图像进行MLBP特征提取,并将得到的特征值串联形成表情图像的特征向量。实验结果表明该方法比MLBP方法直接提取表情特征所产生的特征向量的维数减少了25%,特征提取和识别的速率提高了,其中识别率约提高了9%. 人脸识别研究中的识别率容易受光照强度的影响,针对MLBP算法在光照变化时具有旋转不变性,以及Gabor小波能提供空间位置、空间频率的特性,本文提出了多重局部Gabor值模式方法(Multiple Local Gabor Binary Pattern,M LGBP),该方法先对人脸图像使用Gabor小波进行变换处理,保留受光照影响较小的高频部分,然后再采用MLBP算法对Gabor提取后的图像采用分块编码,最后得到联合直方图序列,获得丰富的局部特征信息,实验结果表明了该算法有效的降低了光照对识别率的影响,提高了光照不均匀时的人险识别率,且在特征提取方面比Gabor等算法更加有效.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值