Time Limit: 1000 ms Memory Limit: 65536 KiB
Problem Description
整数变换问题。关于整数i的变换f和g定义如下:f(i)=3i;
试设计一个算法,对于给定的2 个整数n和m,用最少的f和g变换次数将n变换为m。例如,可以将整数15用4 次变换将它变换为整数4:4=gfgg(15)。当整数n不可能变换为整数m时,算法应如何处理?
对任意给定的整数n和m,计算将整数n变换为整数m所需要的最少变换次数。
Input
输入数据的第一行有2 个正整数n和m。n≤100000,m≤1000000000。
Output
将计算出的最少变换次数以及相应的变换序列输出。第一行是最少变换次数。第2 行是相应的变换序列。
Sample Input
15 4
Sample Output
4
gfgg
Hint
Source
#include <iostream>
using namespace std;
int k = 1;
int c = 0;
char a[100] = {'\0'};
int select(int n, int i)
{
if (i == 0)
{
return 3 * n;
}
else
{
return n / 2;
}
}
bool dfs(int step, int n, int m)
{
int num = n;
if (step > k)
{
return false;
}
for (int i = 0; i < 2; i++)
{
num = select(n, i);
if (num == m || dfs(step + 1, num, m))
{
if (i == 0)
{
a[c++] = 'f';
}
else
{
a[c++] = 'g';
}
return true;
}
}
return false;
}
int main()
{
int n, m;
cin >> n >> m;
k = 1;
while (!dfs(1, n, m))
{
k++;
}
cout << k << endl;
for (int i = 0; i < k; i++)
{
cout << a[i];
}
system("pause");
}