20160712梅西法&科利法.md

本文介绍了BCS评分系统中的两种方法——梅西法和科利法。梅西法通过建立线性方程组来评估队伍实力;科利法则侧重于胜率计算,克服了传统胜率计算的缺陷。两者各有优缺点,但都可用于预测比赛结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

20160712梅西法&科利法

梅西法和科利法是BCS评分里的两种方法。BCS是用来确定哪些队伍被邀请参加哪个系列的比赛的。BCS主要是有两个评分来源:人和计算机。人的输入数据是教练和媒体,计算的输入是6个数学模型。具体BCS的细节这里不细谈了,以后有空专门写一篇博客谈,今天就只谈谈梅西法和科利法。

1. 梅西法

首先放出作者的网站masseyratings.com,如果要搜索梅西法的资料,建议直接google-“massey ratings”,英文资料一大把。

1.1 梅西法基本原理

主要的公式如下:

rirj=yk

其中 yk 代表比赛k中获胜方的优势, ri 代表队伍i的评分, rj 代表队伍j的评分。针对历史已经比赛过的结果,我们可以列出一个上述形式的方程组。n支队伍,m场比赛,那么就有n个未知数,m个方程。写为:
Xr=y

X矩阵:每一行大部分为0,在第i列和j列上分别是1和-1.
y:代表获胜方优势的向量。
r:代表我们所求的每个队伍的评分。
这个方程组解法为 XTXr=XTy 。针 XTX 简单分析下,对角元素就是队伍i完成的比赛场数,非对焦元素就是队伍i和队伍j比赛场数的相反数。针对 XTy 的第i个元素就是队伍i所有比赛获得的分差之和。
这里简单分析下 XTX 是一个n阶对称方阵,也是一个对角阵,并且每一列线性相关。
为了让r有唯一解,往往需要给 XTX XTy 增加一行0,表示每个队伍所有评分总和为0.

1.2 梅西法高级原理

这个高级原理就是引入了一个攻击和防守的特性。这里做了一个假设,队伍的评分等于攻击评分加上防守评分。现在我们引入一些符号来推导一些公式看看。
攻击评分:o
防守评分:d
向量 XTy 分解为f-a,代表得到的总分数-失去的分数。
矩阵 XTX 分解为T-P,T是对角阵,P是非对角阵。

XTXr(TP)(o+d)ToPo+TdPd=XTy=fa=fa

将上式分解为:
ToPdPoTd=f=a

继续:
ToPdT(rd)Pd(T+P)d=f=f=Trf

看看上式,除了d是所求的,其他的都能得到。那么这里的向量d和o就可以搞定了。

1.3 梅西法的使用

当我们能求到一个队伍的攻击分数和防守分数,那么我们可以预测该队伍的的比赛具体分数。比如A队伍攻击分数为5,防守分数为2,B队伍攻击分数为3,防守分数为4,则他们的比分应该是(5-4):(3-2),结局就是1:1。
网页中该如何使用梅西法排名呢?

如果两个网页之间没有超链接,则没有比赛,如果有超链,则代表有比赛。这里就可以搞定矩阵 XTX
同理可以利用所有入链总数减去所有出链总数,代表评分向量 XTY

2 科利法

这个和前面的梅西法不同,关键在于获胜率。以前的获胜率常常使用 ri=witi ,也就是赢的场数除以比赛总场数。但是这个评分是有几个缺陷的,击败强的对手和弱的对手是一样的,如果从未获胜则胜率为0,很多时候常常发生评分持平的情况。
这个时候,科利对刚刚的公式做了一个小小的修改。

ri=1+wi2+ti

简单来看这个改变很简单,感觉用处应该不会太大。接下来就分析下,这个里面如何克服了上面提出的一些缺陷。

2.1 科利法原理

这里是对一个公式进行变形,讨论开始的。

wi=wili2+wi+li2=wili2+ti2=wili2+j=1ti12

这个时候就展开对 tij=112 的讨论。
因为所有队伍都是以1/2开始的,所以最先开始时 tij=112=jojrj 。这里的o_j是指队伍i的对手集合。随着比赛开始, tij=112=jojrj 这个等式就不成立了,但是我们可以说明这个等式近似成立,因为比赛的继续,一方胜利,一方失败,可以说评分是在1/2上左右摇摆的。这就是科利法的关键所在,接下来的推导就很简单了。
wiwili2+joirj ,带入 ri=1+wi2+ti 中得到:

ri=1+(wili)/2+joirj2+ti

观察这个等式,记住我们要求的是r,这里未知的也是r。而且这里很明显是一个线性的等式,可以写为 Cr=b 的形式,继续吧。
bi=1+12(wili)

Cij={2+ti,i=jnij,ij

其中n_ij为队伍i和j比赛次数。可以证明C_{n*n}可逆,具有唯一解。

2.2 科利法应用

  1. 科利法的结果没有考虑比赛具体的分数,只考虑比赛的胜负情况。基于此科利法不会受到比赛具体分数的干扰,比如强队在弱队上大比分的胜出。
  2. 第二点,就是基于之前的假设, tij=112=jojrj ,一个队伍胜率增加,代表另一个队伍胜率降低,但是平均值应该是1/2左右。

2.3 科利法和梅西法的联系

给出一个等式 C=2I+XTX ,那么梅西法可以科利化为 (2I+XTX)r=p ,这里的p也就是梅西法中的y,是包含了得分的信息。这里加上了2I,可以使得矩阵非奇异。同理梅西法也可以进行科利化,一切尽在之前的那个矩阵。

3.感想

说说自己的想法。这两个算法有相关性,有各自的优缺点,比如是否考虑比赛的分数,是否考虑比赛的胜率,能否计算攻守评分等等。但是这里会发现一切都是计算的线性的等式,什么意思呢,比如这个梅西法有偏,是因为这个方法会出现强队大胜弱队的情况,那么这个大胜获取的分数和他们的实力不是成正比,而求解是求解的线性的方程组,所以就导致了有偏。那如果这里能假设是平方的关系,就是获取的分数和实力是平方比的关系,抑或是更复杂的关系,小范围的实力差距是线性,大范围的实力差距是平方或更高的次方。那是否可以试试呢?

内容概要:本文详细探讨了双馈风力发电机(DFIG)在Simulink环境下的建模方及其在不同风速条件下的电流与电压波形特征。首先介绍了DFIG的基本原理,即定子直接接入电网,转子通过双向变流器连接电网的特点。接着阐述了Simulink模型的具体搭建步骤,包括风力机模型、传动系统模型、DFIG本体模型和变流器模型的建立。文中强调了变流器控制算的重要性,特别是在应对风速变化时,通过实时调整转子侧的电压和电流,确保电流和电压波形的良好特性。此外,文章还讨论了模型中的关键技术和挑战,如转子电流环控制策略、低电压穿越性能、直流母线电压脉动等问题,并提供了具体的解决方案和技术细节。最终,通过对故障工况的仿真测试,验证了所建模型的有效性和优越性。 适用人群:从事风力发电研究的技术人员、高校相关专业师生、对电力电子控制系统感兴趣的工程技术人员。 使用场景及目标:适用于希望深入了解DFIG工作原理、掌握Simulink建模技能的研究人员;旨在帮助读者理解DFIG在不同风速条件下的动态响应机制,为优化风力发电系统的控制策略提供理论依据和技术支持。 其他说明:文章不仅提供了详细的理论解释,还附有大量Matlab/Simulink代码片段,便于读者进行实践操作。同时,针对一些常见问题给出了实用的调试技巧,有助于提高仿真的准确性和可靠性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值