Flink Checkpoint 与实时任务高可用保障机制实战

在实时数仓体系中,数据一致性任务稳定性是核心保障。本文围绕 Flink Checkpoint 机制,深入讲解高可用保障的最佳实践和工程实现。


一、业务背景与痛点

在金融风控、营销实时推荐、智能监控等场景中,实时数仓的每一条数据都至关重要。常见的业务痛点包括:

  • 断点恢复困难:一旦 Flink 作业挂掉,重新跑起时如何保证数据不丢、不重?

  • 状态丢失问题:作业状态管理不规范,导致计算错误、统计口径异常。

  • 任务运维复杂:恢复作业需人工介入,影响业务连续性。

Flink 原生的 Checkpoint / Savepoint 机制,是解决以上痛点的关键。


二、Checkpoint 与 Savepoint 机制概览

概念 说明
Checkpoint Flink 自动定期保存的、用于失败自动恢复的快照。
Savepoint
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

晴天彩虹雨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值