筛法1&快速幂&容斥原理

本文详细介绍了三种重要的算法:埃氏筛法和欧拉筛法用于高效求解质数,优化后的筛法能更快处理大整数;快速幂算法解决了高效计算大数次方模问题,适用于大整数运算;最后,通过实例解释了容斥原理在解决集合问题中的应用,提供了一种维护集合思想的方法。
摘要由CSDN通过智能技术生成

筛法&快速幂&容斥原理

>>筛法

埃氏筛法

筛质数求1~n间的质数个数

const int N=1000010;
int n,primes[N],cnt;  //primes[]记录质数  cnt记录质数个数
bool st[N];  //来标记它是质数还是合数,初始化为0即为false规定为质数
using namespace std;

void get_primes(int n)
{
    for(int i =2;i<=n;i++)
    {
        if(!st[i])  primes[cnt++]=i;  //如果是质数把它加到数组里去
        //是合数的话就不用管
     }
      for(int j = i+i;j<=n;j+=i) st[j]=true;//再把它所有的倍数标记为合数
}

//优化  for循环放里边
void get_primes(int n)
{
    for(int i =2;i<=n;i++)
    {
        if(!st[i])  primes[cnt++]=i;  //如果是质数把它加到数组里去
        //是合数的话就不用管
        for(int j = i+i;j<=n;j+=i) st[j]=true;  //再把它所有的倍数标记为合数
     }//优化部分,把质数的倍数标记了
}

欧拉筛法(一般使用这种方法,因为在10^6以上它更快)

用某个数的最小质因子删除它,由于最小质因子是唯一的,所以就不会出现重复删除一个数的情况

const int N = 1000010;
int n, primes[N], cnt;
bool st[N];

void get_primes(int n)
{
    for(int i = 2; i <= n; i++)
    {
        if(!st[i]) primes[cnt++] = i;  
        for(int j = 0; primes[j] <= n / i; j++)  //枚举所有<=它的质数
        {
            st[primes[j] * i] = true;  
            if(i % primes[j] == 0) break;//直到找到i的最小质因子退出循环
        }
    }
}

>>快速幂

用来求解a^b%p的问题
采用二进制进行优化
eg:
在这里插入图片描述
代码如下:

typedef long long LL;

int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res * a % p;  //即与1相与k&==1
        k >>= 1; //k右移一位
        a = (LL)a * a % p;
    }
    return res;
}

>>容斥原理

维护集合的思想
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫薯C菌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值