真的,学了组合数学你会克服公式恐惧症0.0深有体会……
容斥原理
设
A1,A2,…,An
为有限集合,用
|Ai|
表示集合
Ai
中的元素个数那么有这样的结论:
(总的概括就是奇数个集合的并集累加和 减去 偶数个集合的并集累加和)
证明
若
a∈A1∩A2∩…∩An
,则
a
至少属于
不妨设
a
属于
于是
a
在1式左端计算了一次,而
顺带提一句,这种证明方式是“贡献法”
容斥原理加强版
这个加强版是博主和数学竞赛的小伙伴(ckh&yzc)一起讨论组合数学的时候搞出来的,欢迎大家来找出不严谨的地方!
加强版:原容斥原理针对的是集合中元素的个数,而我们拓宽到整个集合,加号改为∪号;而我们定义
A−B
得到的集合就是把A中所有B的元素都去掉后的结果。
例如,若
A={1,2,3,4,5}
B={1,2,4}
那么
A−B={3,5}
证明
以下的证明来自ckh(数学竞赛大佬%%%%%%%)
看不懂的同学在纸上画一画,就能看懂了。
设
S=⋃ni=1Ai
设
Bi=CSAi
(补集的意思)
设
S′=⋂ni=1Bi
再令
Bi=S′+Ci
所以
|B1∩…∩Bi|=|S′|
C1∩C2∩…∩Cn=ϕ
Ai=S−S′−Ci
所以
⋃ni=1Ai=S−S′−(⋂ni=1Ci)=S−S′
代入前面的设,得证。
德.摩根律
设P和Q都是S的子集。
则有:
CS(P∩Q)=(CSP)∪(CSQ)
CS(P∪Q)=(CSP)∩(CSQ)
逐步淘汰原理(筛法公式)
设
S
是有限集合,
证明
因为
|⋃ni=1Ai|=|S|−|CS(⋃ni=1)Ai|
.
根据德.摩根律,我们有
再根据容斥原理就能得到逐步淘汰公式。
置换及其不动点
给定集合
X={1,2,3,…,n}
,
φ
是从X到X上的一一映射,通常记为:
则称 φ 是 X 上的置换,其中
错位排列
在集合 X={1,2,…,n} 上没有任何不动点的置换 φ 的个数是 Dn=n!(1−11!+12!−13!+…+(−1)nn!)
例题3
设
φ
是集合
X={1,2,…,n}
上的置换,将
X
上没有不动点的置换个数记为
证明:
设
gn(i=1,2,…,n)
表示
X
上恰有唯一不动点
于是
由上述推论,有
故
所以
得证