python树

     版权声明:本文为博主原创文章,转载请注明本文链接。文章内容如有错误望能指正,以免误导更多人。 https://blog.csdn.net/feixiangqiao/article/details/89373435

  1. 非线性结构
  2. 树是n(>=0)个元素的集合
  • n = 0时,称为空树
  • 树只有一个特殊的没有前驱的元素,称为树的根Root
  • 树种除了根结点外,其余元素只能有一个前驱,可以有零个或多个后继
  1. 递归定义
  • 树T是n(>=0)个元素的集合,n=0时,称为空树
  • 有且只有一个特殊元素根,剩余元素都可以被划分为m个互不相交的集合T1、T2、T3、…、Tm,而每一个集合都是树,称为T的子树Subtree
  • 子树也有自己的根

一、树的概念

  1. 结点:树中的数据元素
  2. 结点的度degree:结点拥有的子树的数目称为度,记作d(v)。
  3. 叶子结点:结点的度为0,称为叶子结点leaf、终端结点、末端结点
  4. 分支结点:结点的度不为0,称为非终端结点或分支结点
  5. 分支:结点之间的关旭
  6. 内部结点:除根结点外的分支结点,当然也不包括叶子结点
  7. 树的度是树内各结点的度的最大值。D结点度最大为3,树的度数就是3
  8. 孩子(儿子Child)结点:结点的子树的根结点成为该结点的孩子
  9. 双亲(父Patent)结点:一个结点是它各子树的根节点的双亲
  10. 兄弟(Slbling)结点:具有相同双亲结点的结点
  11. 祖先结点:从根节点到该结点所经分支上所有的结点。A、B、D都是G的祖先结点
  12. 子孙结点:结点的所有子树上的结点都称为该结点的子孙。B的子孙是D、G、H、I
  13. 结点的层次(Level):根结点为第一层,根的孩子为第二层,以此类推,记作L(v)
  14. 树的深度(高度Depth):树的层次的最大值。下图的树深度为4
  15. 堂兄弟:双亲在同一层的结点
  16. 有序树:结点的子树都是由顺序的(兄弟有大小,有先后次序)
  17. 无序树:结点的子树是有无序的,可以交换。
  18. 路径:树中的k个结点n1、n2、…、nk,满足ni是n(i+1)的双亲,称n1到nk的一条路径。就是一条线串下来的,前一个都是后一个的父(前驱)结点。
  19. 路径长度=路径上结点数-1,也是分支数
  20. 森林:m(m>=0)棵不相交的树的集合
    a. 对于结点而言,其子树的集合就是森林。A结点的2棵子树的集合就是森林
    树

二、树的特点

  1. 特点
  • 唯一的根
  • 子树不相交
  • 除了根以外,每个元素只能有一个前驱,可以有零个或多个后继
  • 根结点没有双亲结点(前驱),叶子结点没有孩子结点(后继)
  • vi是vj的双亲,则L(vi) = L(vj)-1,也就是说双亲比孩子结点的层次小1
  1. 堂兄弟的双亲是兄弟关系吗?
  • 堂兄弟定义是,双亲结点是同一层的节点
  • 下图G和J是堂兄弟,因为它们的双亲结点D和E在第三层依然是堂兄弟
  • 因此,堂兄弟的双亲不一定是兄弟关系

三、二叉树

  1. 每个节点最多2棵树
    a. 二叉树不存在度数大于2的结点
  2. 它是有序树,左子树、右子树是顺序的,不能交换次序。
  3. 即使某个结点只有一棵子树,也要确定它是左子树还是右子树
  4. 二叉树的五种基本形态
  • 空二叉树
  • 只有一个根结点
  • 根结点只有左子树
  • 根结点只有右子树
  • 根结点有左子树和右子树

四、斜树

  • 左斜树,所有结点都只有左子树
  • 右斜树,所有结点都只有右子树
    斜树

五、满二叉树

  • 一棵二叉树的所有分支结点都存在左子树和右子树,并且所有叶子结点只存在最下面一层。
  • 同样深度二叉树中,满二叉树结点最多。
  • k为深度(1≤k≤n),则结点总数为2^k-1
  • 如下图,一个深度为4的15个结点的满二叉树
    满二叉树

六、完全二叉树Complete Binary Tree

  1. 定义
  • 若二叉树的深度为k,二叉树的层数从1到k-1的结点数都达到了最大个数,在第k层的所有结点都集中在最左边,这就是完全二叉树
  • 完全二叉树由满二叉树引出
  • 满二叉树一定是完全二叉树,但完全二叉树不一定是满二叉树
  • k为深度(1≤k≤n),则结点总数最大值为2^k-1,当达到最大值的时候就是满二叉树
  1. 举例,完全二叉树,最下一层的叶子结点都连续的集中在左边
    完全二叉树
    完全二叉树
    完全二叉树
  2. 举例,不完全二叉树
    不完全二叉树

七、二叉树性质

  1. 性质1:
  • 在二叉树的第i层上至多有2^(i-1)个结点(i≥1)
    二叉树
  1. 性质2
  • 深度为k的二叉树,至多有2^k-1个节点(k≥1)
  • 一层 2-1=1
  • 二层 4-1=1+2=3
  • 三层 8-1=1+2+4=7
    二叉树
  1. 性质3
  • 对任何一棵二叉树T,如果其终端节点数为n0,度数为2的结点为n2,则有n0=n2+1
  • 换句话说,就是叶子结点数-1就等于度数为2的结点数
  • 证明:
    a. 总结点数为n=n0+n1+n2,n1为度数为1的结点总数。
    b. 一棵树的分支数为n-1,因为除了根结点外,其余结点都有一个分支,即n0+n1+n2-1。
    c. 分支数还等于n00+n11+n22,n2是2分支结点所以乘以2,2n2+n1
    d. 可得2*n2+n1=n0+n1+n2-1 => n2=n0-1
    二叉树
  1. 其他性质
  • 高度为k的二叉树,至少有k个结点
  • 含有n(n≥1)的结点的二叉树高度至多为n。
  • 含有n(n≥1)的结点的二叉树的高度至多为n,最小为math.ceil(log₂(n-1)),不小于对数值的最小整数,同上取整。
    a. 假设高度为h,2^h-1=n => h = log₂(n+1),层次数是取整。
    如果是8个节点,3.1699就要向上取整为4,为4层
    二叉树
  1. 性质4
  • 具有n个结点的完全二叉树的深度为int(log₂n)+1或者math.ceil(log₂(n+1))
    完全二叉树
  1. 性质5
  • 如果有一棵n个结点的完全二叉树(深度为性质4),结点按照层序编号,如右图
  • 如果i=1,则结点i是二叉树的根,无双亲;如果i>1,则其双亲是int(i/2),向下取整。就是子节点的编号整除2得到的就是父结点的编号。父结点如果是i,那么左孩子结点就是2i,右孩子结点就是2i+1。
  • 如果2i>n,则结点i无左孩子,即结点i为叶子结点;否则其左孩子结点存在编号为2i。
  • 如果2i+1>n,则结点i无右孩子,注意这里并不能说明结点i没有左孩子;否则右孩子结点存在编号为2i+1。
    完全二叉树
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值