汤姆·齐格弗里德《纳什均衡与博弈论》笔记(5)社会物理学

第七章 凯特勒的统计数据和麦克斯韦的分子理论——数据与社会学,数据与物理学

哈里·谢顿的心理史学

半个多世纪前,当艾萨克·阿西莫夫创立科幻般的心理史学时,并没为细究数学如何起作用而劳神苦思,只简单地说可以像描述分子群那样描述人群。作为专业的化学家,阿西莫夫很清楚:尽管无人知道气体的各个原子的所作所为,但却可精确计算出气体在不同条件下的行为。因此,他认为一门足够先进的科学同样适用于人。

“心理史学研究的不是一个人,而是一群人。”阿西莫夫写道,“是关于群体的科学,几十亿人的群体……任何已知的数学对个人行为都无能为力,但对于几十亿人来说却是另外一回事。”所以,当大家各行其是时,社会可能综合呈现出一种可用方程来描述的模式。心理史学可能不如气体法则那样准确,但那仅仅是因为气体分子远多于人。正如阿西莫夫的角色之一所解释的,“历史规律和物理规律同样绝对,如果说历史规律更易出错,那只是因为历史所研究的人不如物理所研究的原子多,所以,在历史中个体的影响更大。

批注:看《银河帝国》看的。。。

尽管如此,在当时用数学来描述如社会般复杂的事物只是人们无法兑现的勃勃雄心而已,社会心理学仍然停留在科幻阶段。并且在19世纪中期,由于无法量化分子间无序的相互作用,人们对气体宏观特性只知其然而不知其所以然,数学对此似乎同样无能为力。可谁又能把握一群多不可数、渺不可测的分子间的相互作用呢?苏格兰物理学家詹姆斯·克拉克·麦克斯韦(James Clerk Maxwell)先出一招,用统计学对大量分子的平均状态进行数学描述。

计算平均状态可进行惊人的预测。尽管不能确知单个分子何去何从,但只要分子充分多,就可确知它们在特定条件下的状态。例如,由气体的温度可推知气体分子的平均速度,并可算出温度变化对气压的影响。类似的统计方法拓展开去,可以处理各种问题。例如,知道了各种物质的分子的平均能量,预测一个化学反应能否进行以及进行的程度;描述物质的电磁特性,或在应力下是断裂还是被拉伸。在阿西莫夫的心理史学中,社会的特征与气体的温度和压强、化学反应的消长、建筑横梁的断裂等变量类似

虽然阿西莫夫的心理史学仍是科幻梦,但现在已出他所料地接近现实,因为麦克斯韦开创的统计方法已成为当今物理学家研究社会科学和人类行为最爱的数学利器。物理学家已把它用于分析经济、选举、交通流量、疾病扩散、意见传播,甚至在拥挤的剧院中,有人喊起火时,人们在惊慌中的逃生路径也可用它来分析

话又说回来,这种想法并不新颖,也不是物理学家先登捷足。实际上,麦克斯韦是受到社会学家把数学用于社会的启发,才把统计学用于物理,构思了分子的统计学描述。因此,当统计物理学家庆贺他们为社会科学开道辟路时,应该驻足回首一下自己的过去。就像科学记者菲利普·鲍尔的评述,“统计物理学家试图揭示人类群体活动的规律的同时,也回归了他们的出发点。”

批注:持保留与不可知意见吧。

统计学与社会
霍布斯的《利维坦》

在中世纪,机械时钟的重要性使科学家认为宇宙可用机械论来描述。笛卡尔、伽利略和一些近代自然科学的先驱提倡机械、因果的宇宙观,最终带来牛顿在1687年的《自然哲学的数学原理》中建立经典物理体系。这样一来,就吸引了一些17世纪的思想家用机械主义研究社会和生活。其中一位就是托马斯·霍布斯(ThomasHobbes),他在名作《利维坦》中描述了(他认为)可使所有社会成员福利最大化的社会状态。作为大不列颠君主专治的支持者,他自然而然地得出君主专制的结论,认为应当把社会控制权交给拥有绝对权力的君主。否则,人类损人利己的本性得到放纵,生活将变得“污秽、粗野和贫乏”。

霍布斯在研究中先估算不同个体的交互偏好,然后计算出如何为每人达成最优。菲利普·鲍尔在一篇醒目的文章(发表于《物理A》)中指出,霍布斯的研究方法比他有待商榷的结论更重要,稍作修改就会成为可使个体最优的纳什均衡。因此,霍布斯的《利维坦》可以视为用数学来解释社会的早期尝试,并且预示着诸如博弈论之类的理论将成为社会研究中的数学利器

为了量化社会特征,统计学被发明出来,这时真正的数学才进入社会研究。威廉·佩蒂爵士的学生霍布斯是科学家和政治家,他提倡用定量的方法科学地研究社会。在17世纪60年代,他的朋友约翰·格朗特开始编制社会数据统计表(如死亡率统计表),并像今天的棒球迷研究击球率一样研究出生率与死亡率。一个世纪后的法国大革命前夕,人们认为既然天文学家可以揭示上苍的规律,那么社会数据也可以揭示社会规律。在此信念下,搜集社会统计资料变得普遍。鲍尔写道:“很多人认为规律存在于社会就像牛顿的力学原理存在于行星运动一样。”

批注:机械史观是这样的。

当然,要使社会研究在牛顿模型下成为科学,仅搜集资料是不够的。牛顿把物理诠释成确定性的科学,铁打的运动规律决定一切。然而统计学不具确定性,只展现相当的可变性。人类的行为看起来多如幸运抽奖般偶然(如做游戏),在处理这所谓定量的幸运时,便产生了概率的数学分析

概率的早期研究早于牛顿,始于17世纪中叶布莱斯·帕斯卡和皮埃尔·费马对在掷骰子和打牌中如何获胜的研究。不久,概率论的经济用途便起于保险公司,他们用统计表测算人们在特定年龄上的死亡风险,或火灾、沉船损坏受保财产的可能性。

18世纪,随着测量误差理论的发展,概率在物理学(和其他自然科学)中更有施为,尤其在天文学中。具有讽刺意味的是,统计学的一个关键人物皮埃尔·西蒙(法国数学家拉普拉斯侯爵),却因力挺牛顿决定论而闻名。他宣称,如果有一种智能可以分析宇宙中所有物体周围的环境以及加于它们的力,那么借助牛顿定律,事无巨细皆可料定。“对这种智能来说,没有什么不确定,未来的一切像过去的历史一样尽收眼底。”然而,拉普拉斯清楚地知道,没有人的智力如此威力无穷。因此,只有用统计学来处理困扰着人类却又无法逃避的不确定性。拉普拉斯对概率和不确定性有着广泛的论述,特别是对不可避免的测量误差。

例如,假设要测量一颗夜空中可见的行星的位置,那么不论工具多先进,不可控因素都不能使测量毫发不爽,至少有分秒之差。但是这种随机误差并不会使你的测量完全不准确。虽然个别误差可能是随机的,但通过分析总体误差却可以揭示出一些行星位置坐标的真实信息。例如,测量时谨小慎微,出现大误差的可能性就小,谬之千里的可能性更微乎其微。

批注:拉普拉斯妖?

在把数学用于误差范围研究的数学家中,除拉普拉斯外还有德国数学家卡尔·弗里德里希·高斯。描述随机误差如何绕均值分布的钟形曲线(高斯分布)就是用他的名字命名的。对于重复测量来说,曲线的顶点最接近真值,也即所有数据的平均值(假定误差是由随机的、不可控的因素引起的,而不是由测量工具本身所引起的),高斯曲线同样告诉你不同的测量数据偏离均值的可能性当高斯凭高斯曲线而声名远播时,拉普拉斯却把高斯曲线用于对人的研究,并做出重要贡献。拉普拉斯和当时的很多人都认识到统计学与人类行为的关系,并把高斯曲线用于研究男女出生比。拉普拉斯的浓厚兴趣导致高斯曲线的潜在价值被广泛发掘。在发掘过程中,比利时数学家、天文学家阿道夫·凯特勒功不可没。

社会物理学

凯特勒,1796年生于根特,尽管少有人知道他把数学用于今天为大部分美国人熟知又忌讳的领域,但的确是他发明了衡量肥胖的凯特勒指标,即体重指数,简称BMI。可是与他把科学用于社会的远见相比,BMI显得微不足道。

批注:啊?

在巴黎期间,凯特勒不仅涉足天文,他还向拉普拉斯学习概率论,并结识了拉普拉斯的同事——泊松和傅立叶,他们和凯特勒一样对社会统计学爱不释手。随后,凯特勒意识到拉普拉斯用高斯曲线刻画社会特征的方法可广泛推广,于是开始就社会的统计学描述发表论文。1835年他撰写了一篇详细阐述他所谓的社会物理学(或社会力学)的论文,并引入“平均人”的概念来分析社会问题。他知道“平均人”并不存在,但通过对众人各方面的平均却能更深入地认识社会。“当把我的工作冠以社会物理学之名时,我别无他求,只求能像物理学联系起物质世界的现象一样把社会现象统一起来。”凯特勒评论道。

凯特勒的关键论点是,人类无常的行为看起来复杂得不可琢磨,但当考察大量行为时却呈现出规律性。他写道:“在特定社会状态下,特定的影响因素产生特定的效果。这些效果围绕固定的均值波动,不会大起大落。”他相信,虽然历史趋势和历史事件显得混乱,但有关测量误差的统计规律却将从中找出可预测的范式。凯特勒认为,一个政府要想在理解人性的基础上得到巩固,对“平均人”概念的理解是必要的。当然,没有固定的人性特征适用于一个人的所有方面,但是相比其他领域,在社会学中更易出现特定趋势,所以我们能够用统计方法建立一个抽象的“平均”,用来表示人类诸多特性的典型混合

凯特勒以箭靶做比来表述他的观点。在箭手多次射击后,靶上的箭离靶心远近不等,但却呈现明显的分布模式。假设由于某种原因使得靶心模糊不清,即使没有箭正中靶心,却仍然可以通过箭的分布推断出靶心的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值