在2*N的一个长方形方格中,用一个1*2的骨牌排满方格。
问有多少种不同的排列方法。
例如:2 * 3的方格,共有3种不同的排法。(由于方案的数量巨大,只输出 Mod 10^9 + 7 的结果)
Input
输入N(N <= 1000)
Output
输出数量 Mod 10^9 + 7
Sample Input
3
Sample Output
3
分析:从N小的时候入手,比如N=2时,有两种放置的方法:竖放或者横放
f[1]=1,f[2]=2,f[3]=3,f[4]=5,……
这就是斐波拉契数列,
f[0]=f[1]=1;
f[n]=f[n-1]+f[n-2],n>=2
DP代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n;
const int mod=1e9+7;
const int N=1005;
int dp[N];
int solve(int width)
{
if(width<=1) return 1;
int& ret=dp[width];
if(ret!=-1) return ret;
return ret=(solve(width-1)+solve(width-2))%mod;
}
int main()
{
while(~scanf("%d",&n))
{
memset(dp,-1,sizeof(dp));
int ans=solve(n);
printf("%d\n",ans);
}
return 0;
}
当然也可以直接数组循环使用
描述
骨牌,一种古老的玩具。今天我们要研究的是骨牌的覆盖问题:
我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?
举个例子,对于长度为1到3的棋盘,我们有下面几种覆盖方式:
提示:
我们考虑在已经放置了部分骨牌(灰色)的情况下,下一步可以如何放置新的骨牌(蓝色):
最右边的一种情况是不可能发生的,否则会始终多一个格子没有办法放置骨牌。或者说灰色部分的格子数为奇数,不可能通过1x2个骨牌放置出来。
那么通过对上面的观察,我们可以发现:
在任何一个放置方案最后,一定满足前面两种情况。而灰色的部分又正好对应了长度为N-1和N-2时的放置方案。由此,我们可以得到递推公式:
f[n] = f[n-1] + f[n-2];
这个公式是不是看上去很眼熟?没错,这正是我们的费波拉契数列。
f[0]=1,f[1]=1,f[2]=2,…
提示:如何快速计算结果
当N很小的时候,我们直接通过递推公式便可以计算。当N很大的时候,只要我们的电脑足够好,我们仍然可以直接通过递推公式来计算。
但是我们学算法的,总是这样直接枚举不是显得很Low么,所以我们要用一个好的算法来加速(装X)。
事实上,对于这种线性递推式,我们可以用矩阵乘法来求第n项。对于本题Fibonacci数列,我们希望找到一个2x2的矩阵M,使得(a, b) x M = (b, a+b),其中(a, b)和(b, a+b)都是1x2的矩阵。
显然,只需要取M = [0, 1; 1, 1]就可以了:
进一步得到:
那么接下来的问题是,能不能快速的计算出M^n?我们先来分析一下幂运算。由于乘法是满足结合律的,所以我们有:
不妨将k[1]..k[j]划分的更好一点?
其中(k[1],k[2]…k[j])2表示将n表示成二进制数后每一位的数字。上面这个公式同时满足这样一个性质:
结合这两者我们可以得到一个算法:
1. 先计算出所有的{a^1, a^2, a^4 … a^(2^j)},因为该数列满足递推公式,时间复杂度为O(logN)
2. 将指数n二进制化,再利用公式将对应的a^j相乘计算出a^n,时间复杂度仍然为O(logN)
则总的时间复杂度为O(logN)
这种算法因为能够在很短时间内求出幂,我们称之为“快速幂”算法。
Close
输入
第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000
输出
第1行:1个整数,表示覆盖方案数 MOD 19999997
Sample Input
62247088
Sample Output
17748018
分析:上面已经给出来了,就是斐波拉契数列用矩阵快速幂计算
斐波拉契数列的定义如下:
f[0]=0,f[1]=1;
f[n]=f[n-1]+f[n-2],n>=2
这道题相当于变形了一下,f[0]=f[1]=1;f[n]=f[n-1]+f[n-2],n>=2
最后输出A[0][0]
矩阵快速幂的AC代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int mod=19999997;
const int N=1005;
typedef long long LL;
LL n;
typedef vector<LL>vec;
typedef vector<vec>mat;
mat mul(mat &A,mat &B)
{
mat C(A.size(),vec(B[0].size()));///分配大小,A的行,B的列
for(int i=0; i<A.size(); i++) ///矩阵A的行
for(int k=0; k<B.size(); k++) ///矩阵B的行
for(int j=0; j<B[0].size(); j++) ///矩阵B的列
C[i][j]=(C[i][j]+A[i][k]*B[k][j]%mod+mod)%mod;
return C;
}
///计算A^n
mat pow(mat A,LL n)
{
mat B(A.size(),vec(A.size()));///和矩阵A的大小相同
for(int i=0; i<A.size(); i++)
B[i][i]=1;
while(n>0)
{
if(n&1) B=mul(B,A);
A=mul(A,A);
n>>=1;
}
return B;
}
void solve()
{
mat A(2,vec(2));///2*2的矩阵
A[0][0]=1;
A[0][1]=1;
A[1][0]=1;
A[1][1]=0;
A=pow(A,n);
printf("%d\n",A[0][0]);
}
int main()
{
while(~scanf("%lld",&n))
{
solve();
}
}