量化交易系统开发-实时行情自动化交易-8.22.富途牛牛平台

19年创业做过一年的量化交易但没有成功,作为交易系统的开发人员积累了一些经验,最近想重新研究交易系统,一边整理一边写出来一些思考供大家参考,也希望跟做量化的朋友有更多的交流和合作。

接下来会对于富途牛牛平台介绍。

富途牛牛是一款提供股票交易、行情查看以及社区互动的综合性投资平台。随着量化交易的普及,富途牛牛平台也逐渐提供了支持程序化交易的接口和服务,通过其API开发者可以实现从数据获取到策略开发与回测的一体化流程。本文以一个经典的“双均线策略”为例,详细展示如何在富途牛牛平台上进行量化交易开发与回测。


1. 策略背景:双均线策略

策略逻辑

双均线策略是一种趋势跟随型策略,利用短期和长期均线的交叉关系生成买卖信号:

  • 买入信号:短期均线(如10日均线)上穿长期均线(如50日均线),称为黄金交叉。
  • 卖出信号:短期均线下穿长期均线,称为死亡交叉。
策略特点
  • 适用场景:适用于趋势性较强的市场,能有效捕捉价格波动。
  • 局限性:在震荡市场中可能出现较多错误信号。

2. 策略开发

富途牛牛支持通过其官方API接口开发量化交易策略。以下为基于“双均线策略”的开发和回测过程。

(1)准备工作

在使用富途API之前,需要完成以下准备:

  1. 注册API权限:通过富途牛牛的开放平台申请开发者权限。
  2. 安装SDK:富途牛牛提供了Python SDK,用户需先安装:
    pip install futu-api
    
(2)初始化参数与环境
# 导入所需模块
from futu import OpenQuoteContext
import pandas as pd

# 策略参数
SHORT_PERIOD = 10  # 短期均线周期
LONG_PERIOD = 50   # 长期均线周期
INITIAL_CAPITAL = 100000  # 初始资金
STOCK_CODE = 'HK.00700'  # 腾讯控股
(3)获取历史数据

通过富途API获取指定股票的历史数据。

# 获取股票历史数据函数
def get_stock_data(stock_code, start_date, end_date):
    quote_ctx = OpenQuoteContext(host='127.0.0.1', port=11111)  # 初始化行情接口
    ret, df = quote_ctx.get_history_kline(stock_code, start=start_date, end=end_date, ktype='K_DAY', autype='qfq')
    quote_ctx.close()  # 关闭连接
    if ret != 0:
        raise Exception(f"获取数据失败: {df}")
    df = df[['time_key', 'close']]  # 提取日期和收盘价
    df.rename(columns={'time_key': 'Date', 'close': 'Close'}, inplace=True)
    df['Date'] = pd.to_datetime(df['Date'])
    df.set_index('Date', inplace=True)
    return df

# 加载历史数据
start_date = '2020-01-01'
end_date = '2022-01-01'
data = get_stock_data(STOCK_CODE, start_date, end_date)
(4)计算均线

根据收盘价计算短期和长期移动平均线。

# 计算均线
data['Short_MA'] = data['Close'].rolling(window=SHORT_PERIOD).mean()
data['Long_MA'] = data['Close'].rolling(window=LONG_PERIOD).mean()
(5)生成交易信号

根据均线交叉情况生成买卖信号。

# 生成买卖信号
data['Signal'] = 0  # 初始化信号
data.loc[data['Short_MA'] > data['Long_MA'], 'Signal'] = 1  # 买入信号
data.loc[data['Short_MA'] <= data['Long_MA'], 'Signal'] = -1  # 卖出信号
(6)回测逻辑

通过信号模拟交易,计算资金曲线与持仓。

# 初始化回测环境
data['Position'] = 0  # 持仓状态
data['Cash'] = INITIAL_CAPITAL  # 初始资金
data['Portfolio'] = INITIAL_CAPITAL  # 总资产

# 回测过程
holdings = 0  # 持仓数量
entry_price = 0  # 记录买入价格

for i in range(1, len(data)):
    current_signal = data.iloc[i]['Signal']  # 当前信号
    current_price = data.iloc[i]['Close']   # 当前收盘价
    
    # 买入逻辑
    if current_signal == 1 and holdings == 0:
        holdings = data.iloc[i - 1]['Cash'] // current_price  # 按当前资金最大买入
        data.at[data.index[i], 'Cash'] = data.iloc[i - 1]['Cash'] - holdings * current_price
        data.at[data.index[i], 'Position'] = holdings
        entry_price = current_price  # 记录买入价格

    # 卖出逻辑
    elif current_signal == -1 and holdings > 0:
        data.at[data.index[i], 'Cash'] = data.iloc[i - 1]['Cash'] + holdings * current_price
        holdings = 0
        data.at[data.index[i], 'Position'] = holdings

    # 更新总资产
    current_holdings = holdings * current_price  # 持仓市值
    data.at[data.index[i], 'Portfolio'] = data.iloc[i]['Cash'] + current_holdings

3. 策略优化

(1)参数优化

通过网格搜索寻找短期和长期均线的最佳周期。

# 参数优化
best_params = None
best_return = -float('inf')

for short_period in range(5, 21):
    for long_period in range(30, 101):
        if short_period >= long_period:
            continue
        data['Short_MA'] = data['Close'].rolling(window=short_period).mean()
        data['Long_MA'] = data['Close'].rolling(window=long_period).mean()
        data['Signal'] = 0
        data.loc[data['Short_MA'] > data['Long_MA'], 'Signal'] = 1
        data.loc[data['Short_MA'] <= data['Long_MA'], 'Signal'] = -1

        # 简化回测逻辑,仅计算最终收益率
        holdings = 0
        cash = INITIAL_CAPITAL
        for i in range(1, len(data)):
            signal = data.iloc[i]['Signal']
            price = data.iloc[i]['Close']
            if signal == 1 and holdings == 0:
                holdings = cash // price
                cash -= holdings * price
            elif signal == -1 and holdings > 0:
                cash += holdings * price
                holdings = 0
        portfolio = cash + holdings * data.iloc[-1]['Close']
        total_return = (portfolio - INITIAL_CAPITAL) / INITIAL_CAPITAL

        if total_return > best_return:
            best_return = total_return
            best_params = (short_period, long_period)

print(f"最佳参数:短期均线={best_params[0]}, 长期均线={best_params[1]}, 总收益率={best_return:.2%}")
(2)止盈止损

为策略引入止盈止损机制。

TAKE_PROFIT = 0.1  # 止盈10%
STOP_LOSS = 0.05   # 止损5%

for i in range(1, len(data)):
    if holdings > 0:
        pnl = (data.iloc[i]['Close'] - entry_price) / entry_price
        if pnl >= TAKE_PROFIT or pnl <= -STOP_LOSS:
            data.at[data.index[i], 'Cash'] = data.iloc[i - 1]['Cash'] + holdings * data.iloc[i]['Close']
            holdings = 0
            data.at[data.index[i], 'Position'] = holdings

<think>好的,我需要帮助用户找到关于途牛量化卡片在PC端的使用教程或下载方式。首先,我应该先确认途牛的官方网站是否有相关的资源。根据经验,大多数金融软件都会在官网上提供下载链接和基础教程。 接下来,用户提到的量化卡片可能是指途牛中的量化交易功能模块。我需要检查官方网站的支持或帮助中心部分,看看是否有专门的量化交易教程。此外,途牛可能有社区论坛或知识库,用户可以在那里找到其他用户的经验分享或官方发布的指南。 如果官网信息不够详细,可能需要建议用户联系客服获取更直接的帮助。另外,第三方平台如知乎、雪球等金融社区也可能有用户撰写的使用心得或教程,这些可以作为补充资源。需要注意的是,下载软件时应确保来源可靠,避免安全风险。 用户提供的引用内容似乎与当前问题关联不大,但引用[4]提到了加入知识星球获取资源,这可能是一个径,不过需谨慎推荐第三方平台。最终,整理出官方的下载步骤、功能入口以及教程查找方法,确保用户能安全有效地使用量化卡片功能。</think>关于途牛PC端量化卡片的使用,以下是分步骤说明: **1. 软件下载与安装** - 访问途牛官网(www.futunn.com),选择"PC客户端"下载 - 安装时注意勾选$量化交易插件$组件(默认集成,无需单独安装) **2. 功能入口定位** - 登录后通过顶部导航栏选择"交易" → "量化卡片" - 或使用快捷键$Ctrl+Q$直接唤出量化面板 **3. 核心功能模块** ```python # 示例量化策略代码结构(具体API以官方文档为准) def on_bar(context): # 获取持仓数据 position = context.portfolio.positions # 条件单触发逻辑 if context.data['MA5'] > context.data['MA20']: order_target_percent(symbol='00700', target=0.5) ``` **4. 学习资源获取** - 官网"帮助中心"提供$API文档$和$策略回测教程$ - 客户端内置"量化学院"含视频课程(需登录查看)[^4] **注意事项** - 部分高级功能需要开通专业版账户 - 实时行情订阅可能产生额外费用 - 策略回测建议使用历史数据验证$收益率$和$最大回撤率$指标
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC数据超市

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值