【数据竞赛】2020年11月国内大数据竞赛信息-奖池5000万

2020年11月:下面是截止到2020年11月国内还在进行中的大数据比赛题目,非常丰富,大家选择性参加,初学者可以作为入门练手,大佬收割奖金,平时项目不多的,比赛是知识非常好的实践方式,本号会定期发布各种赛事资讯,整理不易,欢迎关注,大家多多分享转发。

DataFountain

链接:http://www.datafountain.cn/#/competitions

遥感影像地块分割 ¥100,000

本次评测旨在衡量遥感影像地块分割模型在多个类别上的效果,具体包括建筑、耕地、林地、水体、道路、草地和其他等7个类别。在复赛阶段,结合遥感的真实应用场景,我们设置了更具有挑战性的评测标准。

 

openLooKeng性能优化 ¥50,000

赛选手基于openLooKeng社区所提供的比赛分支,进行openLooKeng的代码优化,以提升openLooKeng对接hive数据源(文件使用ORC格式)的执行效率。组委会提供benchmark工具集(包括SQL语句等)供选手进行测试。在比赛阶段,选手将最终优化过的openLooKeng代码进行提交,组委会会使用相同的benchmark工具集进行评测以及排名。

 

房产行业聊天问答匹配 ¥100,000

本次赛题的任务是:给定IM交流片段,片段包含一个客户问题以及随后的经纪人若干IM消息,从这些随后的经纪人消息中找出一个是对客户问题的回答。

 

千言:多技能对话 ¥50,000

1.闲聊对话:在闲聊场景中,是否可以生成流畅的、与上下文相关的对话回复。 

2.知识对话:是否可以在对话过程中充分利用外部知识,并且在生成对话回复的过程中引入外部知识。 

3.推荐对话:是否可以在对话过程中基于用户兴趣以及用户的实时反馈,主动对用户做出推荐。

 

大数据时代的Serverless工作负载预测 ¥50,000

传统的资源控制系统以阈值为决策依据,只关注当前监控点的取值,缺少对历史数据以及工作负载趋势的把控,不能提前做好资源的调整,具有很长的滞后性。近年来,随着企业不断上云,云环境的工作负载预测成为一个经典且极具挑战的难题。

 

小学数学应用题自动解题 ¥50,000

该任务是为了衡量现有机器学习模型在应用题理解方面的能力,模型读入一个应用题,输出该题的结果。为了降低任务的难度,赛题选择小学数学1-6年级校内题目。 

例如: 

1.商店有4框苹果,每框55千克,已经卖出135千克,还剩多少千克苹果?=85

2.玩具厂生产了960个电子玩具,每3个装一盒,每5盒装一箱,一共装了多少箱?=64

 

路况状态时空预测 ¥50,000

根据滴滴提供的道路小段的实时和历史路况状态特征, 道路基本属性以及路网拓扑关系图, 预测未来一段时间内道路小段的路况状态(即畅通, 缓行和拥堵几类状态)。

 

面向数据安全治理的数据内容智能发现与分级分类 ¥50,000

识别样本中的敏感数据,构建基于敏感数据本体的分级分类模型,判断数据所属的类别以及级别。 

1.利用远程监督技术,基于小样本构建文档分类分级样本库。 

2.结合当下先进的深度学习和机器学习技术,利用已构建的样本库,提取文本语义特征,构建泛化能力强且能自我学习的文档分类分级模型。

 

企业非法集资风险预测 ¥50,000

利用机器学习、深度学习等方法训练一个预测模型,该模型可学习企业的相关信息,以预测企业是否存在非法集资风险。赛题的难点在于数据集包括大量的企业相关信息,如何从中提取有效的特征并进行风险预测成为本赛题的关键问题。

 

非结构化商业文本信息中隐私信息识别 ¥20,000

本赛题要求参赛者从提供的非结构化商业文本信息中识别出文本中所涉及到的隐私数据,包括但不限于: 

(1)公司或个人基本信息:账号、姓名、联系方式、地址等; 

(2)商业秘密:制造方法、工艺流程、产品名称、专利名称等。

 

大规模图数据中kmax-truss问题的求解和算法优化 ¥50,000

输入:无向图G=。其中V代表顶点集合,E代表边集合。 

输出:图G的最大k值,即kmax;以及kmax-truss子图中边的条数。 

参赛者需要在给定服务器平台和给定数据集上实现求解kmax-truss问题的算法,并对算法进行优化以减少计算时间。

 

基于大数据的互联网虚拟身份归一处理性能优化 ¥50,000

参赛者采用统计学理论方法、数据挖掘中的关联分析、图论相关算法完成虚拟身份归一化。

 

气象+创意应用 ¥80,000

1 根据主办方提供的滑雪场气象观测数据,对该数据时间段中的降雪量、积雪深度、雪质、体感舒适度、造雪时间点等进行预测。 

2 利用主办方提供的旅游景区气象数据结合景区周边餐馆、酒店数据建模,构建价格模型,例如:使酒店入住率与价格达到最优。 

3 我国沿海、近海地区受台风影响严重,特别是航运中的船只作业、近海养殖等,根据主办方提供的台风相关数据,参赛者对数据进行创意性的挖掘,提交创新成果或产品。

 

气象服务可视化 ¥80,000

通过互联网、物联网、5G、AR、VR等新科技手段,创意创新气象服务模式,在视频、音频、虚拟气象服务等方面创新性挖掘应用、解决方案或媒体产品。

 

阿里天池

链接:https://tianchi.aliyun.com/competition/gameList/activeList

"万创杯”中医药天池大数据竞赛——智慧中医药应用创新挑战赛 ¥300000

本次比赛旨在优选出优秀的中医药人工智能大数据领域的应用创新解决方案,并以科技扶持、产业发展资金或产业扶持、对接创投资本等方式吸引项目落地应用,打造全国领先中医药人工智能高地。1、线上线下问诊的中医诊疗服务2、中医药经典知识体系沉淀挖掘与智能诊断3、中医药新药研发创新、精准种植与质量溯源。

 

“万创杯”中医药天池大数据竞赛——中药说明书实体识别挑战 ¥300000

疫情催化下,人工智能正在持续助力中医药传承创新加速发展,其中中医用药知识体系沉淀挖掘是一个基础工作。通过挖掘中药说明书构建中药合理用药的知识图谱,将为中医规范诊疗奠定较好基础。挑战旨在通过抽取中药药品说明书中的关键信息,中医药药品知识库的目标。

 

“万创杯”中医药天池大数据竞赛——中药说明书实体识别挑战 ¥300000

疫情催化下,人工智能正在持续助力中医药传承创新加速发展,其中中医用药知识体系沉淀挖掘是一个基础工作。通过挖掘中药说明书构建中药合理用药的知识图谱,将为中医规范诊疗奠定较好基础。挑战旨在通过抽取中药药品说明书中的关键信息,中医药药品知识库的目标。

 

安全AI挑战者计划第五期:伪造图像的对抗攻击 ¥2000000

安全AI挑战者计划今年计划举办四次,每次主题各不相同。比赛开始后,赛事平台会对外开放相关接口,选手可以通过向接口提交恶意样本,来攻击AI引擎,使之产生误判。比赛将从文字、图像、视频、声音等多个领域设置题目,有target类型的题目也有non-target类型的问题,主办方也将在每新一轮变化相关模型。

 

华为云大赛

链接:https://competition.huaweicloud.com/competitions

“华为云杯”2020人工智能创新应用大赛 ¥330,000

本赛题任务是基于高分辨可见光遥感卫星影像,提取复杂场景的道路与街道网络信息,将影像的逐个像素进行前、背景分割,检测所有道路像素的对应区域。

 

2020GDE全球开发者大赛·KPI异常检测¥ 20000

核心网在移动运营商网络中地位举足轻重,一旦故障会对全网的服务质量影响很大。需及时快速发现核心网风险并消除故障。本赛事提供某运营商的KPI真实数据,参赛选手需根据历史一个月异常标签数据训练模型。

 

求职训练营 · Java实践排位赛 ¥0

华为云求职训练营知识竞答是华为公司面向全国大学生及个人开发者举办的大型软件竞答活动。帮助大家快速掌握企业级Java编程规范的要求,更好完成学生向开发者,初级开发者向高级开发者的转变。

 

华为云首届技术创新大赛 ¥300,000

华为云创新大赛是由华为云主办,面向国内高校与科研机构研究人员以促进云与IT产业技术创新为目标的赛事。大赛发布华为云与IT相关技术挑战,希望为高校科研人员提供云与IT技术创新和交流的平台。

 

百度大脑

链接:https://aistudio.baidu.com/aistudio/competition

2020 CCF BDCI 遥感影像地块分割 ¥100,000

遥感影像地块分割, 旨在对遥感影像进行像素级内容解析,对遥感影像中感兴趣的类别进行提取和分类,在城乡规划、防汛救灾等领域具有很高的实用价值,在工业界受到了广泛关注。

 

2020 CCF BDCI 千言:多技能对话¥50,000 + 特别礼包

1.闲聊对话:在闲聊场景中,是否可以生成流畅的、与上下文相关的对话回复。2.知识对话:是否可以在对话过程中充分利用外部知识,并且在生成对话回复的过程中引入外部知识。3.推荐对话:是否可以在对话过程中基于用户兴趣以及用户的实时反馈,主动对用户做出推荐。

 

中石油 · 第二届梦想云创新大赛 ¥300,000

设计一个抽油机工况数据的分类模型,可准确的识别抽油机当前的工作状态,提高抽油机井工况诊断准确率。

 

常规赛:MarTech Challenge 用户购买预测 奖池:特别礼包

智能营销工具可以帮助商家预测用户购买的行为,这里我们提供了品牌商家的历史订单数据,请构建一个 预测模型,预估用户人群在规定时间内产生购买行为的概率。

 

常规赛:MarTech Challenge 点击反欺诈预测 奖池:特别礼包

广告欺诈是数字营销需要面临的重要挑战之一,点击会欺诈浪费广告主大量金钱,同时对点击数据会产生误导作用。本次比赛提供了约50万次点击数据。特别注意:我们对数据进行了模拟生成,对某些特征含义进行了隐藏,并进行了脱敏处理。

 

2020中国华录杯·数据湖算法大赛 — 飞桨赛道 ¥210,000

要求参赛者利用提供的训练数据,设计一个车道线检测和分类模型,来检测测试数据中车道线的具体位置和类别。

 

 

DataCastle

链 接:http://www.dcjingsai.com/

2020厦门国际银行数创金融杯建模大赛 ¥310,000

随着科技发展,银行陆续打造了线上线下、丰富多样的客户触点,来满足客户日常业务办理、渠道交易等客户需求。面对着大量的客户,银行需要更全面、准确地洞察客户需求。在实际业务开展过程中,需要发掘客户流失情况,对客户的资金变动情况预判;提前/及时针对客户进行营销,减少银行资金流失。本次竞赛提供实际业务场景中的客户行为和资产信息为建模对象,一方面希望能借此展现各参赛选手的数据挖掘实战能力,另一方面需要选手在复赛中结合建模的结果提出相应的营销解决方案,充分体现数据分析的价值。

 

TrafficHUT基于航拍视频的车辆轨迹识别竞赛 ¥120,000

“2020 TrafficHUT 基于航拍视频的车辆轨迹识别竞赛”(以下简称“大赛”),由北京交通发展研究院主办,通过开放北京市高清航拍数据,面向全球征集车辆轨迹识别和跟踪的算法,构建有中国特色的高精度标准交通轨迹库和行为特征库TrafficHUT(High-definition Unified Trajectory dataset) 。缩写HUT寓意 “共享小屋”,旨在号召共建共享,以此推动中国交通行为研究。

本次竞赛是TrafficHUT数据集竞赛的第一阶段,旨在解决现有轨迹视频识别中的技术难点,加快轨迹库建设。为TrafficHUT数据集下一阶段的交通行为研究提供扎实的数据基础。 

 

Biendata

链接:https://biendata.com/

链想家计算科技大赛:COVID-19 知识图谱构建 赛道二 ¥50,000

本次⽐赛聚焦于医疗(特别是和新冠肺炎相关)的知识图谱技术。

数据来源包括近期发布的有关新冠肺炎的英文学术论⽂数据,并经过标注。

 

链想家计算科技大赛:MOOCCube学生行为分析 赛道二 ¥75,000

本次比赛的赛题为预测学生答题正确性。参赛选手需要根据学生的课堂表现,参与度等,预测学生对于给定的题目是否能正确作答。

 

链想家计算科技大赛:MOOCCube学生行为分析 赛道一 ¥75,000

本次比赛的赛题为预测学生退课行为。参赛选手需要根据学生的课堂表现,观看视频,参与答题情况,预测学堂在线的某一名学生是否中途退课。

 

 链想家计算科技大赛:COVID-19 知识图谱构建 赛道一  ¥50,000

本次⽐赛聚焦于医疗(特别是和新冠肺炎相关)的知识图谱技术。

数据来源包括近期发布的有关新冠肺炎的英文学术论⽂数据,并经过标注。

 

AI研习社

链接:https://god.yanxishe.com/

图像场景分类挑战赛 ¥3000

数据都是世界各地的风景图片,共有6类,buildings、street、forest、sea、mountain、glacier。选手需要建立并训练模型识别测试图片所属的分类。

 

酒店评分预测 ¥2000.00

本次比赛给出了某条高铁线路的客流量请客,给出2012-08-25至2014-06-25的数据,要求预测2014-06-25至2014-09-25上午某时刻或者下午某时刻的乘客数量,预测上午乘客数量时,下午数据会给出,预测下午数据时,上午数据会给出。

 

高铁乘客数量检测 ¥3000

本次比赛需要选手准确识别10种猴子,数据集只有图片,没有boundbox等标注数据。

 

FlyAI

链接:www.flyai.com

1024程序员节—蝴蝶分类开源竞赛 奖金池 ¥ 3000+专属V100 GPU奖励

本赛题任务主要是通过对200类蝴蝶建立精准的分类模型。数据集大约有20,223张,涵盖200个物种,116属,23个亚科和5个科的四个不同级别。

 

Kesci

链接:https://www.kesci.com/apps/home/competition

数字电网开发者大赛¥ 千万及项目支持

接近尾声

2020上海新能源汽车大数据比赛¥ 34000

接近尾声

 

BdRace数睿思

链接:https://www.tipdm.org/bdrace/index.html

第一届“大湾区杯”粤港澳金融数学建模竞赛 ¥86000

赛题来源于金融投资领域的现实需求,赛题分A,B两题,参赛队在规定的时间选一题作答。赛题将于竞赛开赛前在相关网站公布。

往期精彩回顾




适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑

获取一折本站知识星球优惠券,复制链接直接打开:

https://t.zsxq.com/y7uvZF6

本站qq群704220115。

加入微信群请扫码:

AliDMCompetition 阿里巴巴大数据竞赛(http://102.alibaba.com/competition/addDiscovery/index.htm ) 数据说明 提供的原始文件有大约4M左右,涉及1千多天猫用户,几千个天猫品牌,总共10多条的行为记录。 用户4种行为类型(Type)对应代码分别为: 点击:0 购买:1 收藏:2 购物车:3 提交格式 参赛者将预测的用户存入文本文件中,格式如下: user_id \t brand_id , brand_id , brand_id \n 上传的结果文件名字不限(20字以内),文件必须为txt格式。 预测结果 真实购买记录一共有3526条 TODO 注意调整正负样本比例 在LR的基础上做RawLR。按照天猫内部的思路来。 在LR的基础上做MRLR,样本提取要更加合理。 在UserCF和ItemCF上加上时间因子的影响。 利用UserCF做好的用户聚类、ItemCF做好的品牌聚类来做细化的LR,或者在聚类 上做LFM 在ItemCF的思路上挖掘频繁项集/购买模式,如购买品牌A和商品后往往会购买 品牌B的商品 LFM 数据集特征 某一商品在购买前的一段时间内会出现大量点击次数,购买完成后的一段时间内也会出现大量点击次数 用户在本有过行为的商品极少出现在下个的购买列表里 根据观察推断:用户浏览商品的行为可分为两类: 无目的浏览,可能会在浏览过程中对某些中意的商品进行购买,数据表现为有大量点击次数<=2的行为记录,但很少有购买行为 有目的的查找商品,可能是事先有需求的情况,数据表现为一段时间内点击商品数很少, 但点击过的商品大多数都进行了购买 参考论文 See https://www.google.com.hk/search?q=data+mining+time+series&ie=utf-8&oe=utf-8&aq=t for more. Chapter 1 MINING TIME SERIES DATA - ResearchGate 模型列表 LR(model=LinearSVC(C=10, loss='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 1438 1436 626 71 12 | % 100% 99.861% 43.533% 4.937% 0.834% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 76 Precision 5.285118% Recall 5.797101% F1 Score 5.529283% LR(model=LogisticRegression(penalty='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 1472 1470 615 68 14 | % 100% 99.864% 41.780% 4.620% 0.951% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 74 Precision 5.027174% Recall 5.644546% F1 Score 5.318002% 这个模型在数据变成2次后,Precision ~ 16%,同时F1 ~ 3% LR(model=Perceptron(penalty='l1'), alpha=0.7, degree=1) | TOTAL VISITED BOUGHT FAVO CART NEW | Pred # 3145 3140 1023 130 26 | % 100% 99.841% 32.528% 4.134% 0.827% | Real # 1311 250 89 10 1 | % 100% 19.069% 6.789% 0.763% 0.076% Hit # 113 Precis
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值