今天来给大家普及一下霍夫曼编码(Huffman Coding),一种用于无损数据压缩的熵编码算法,由美国计算机科学家大卫·霍夫曼在 1952 年提出——这么专业的解释,不用问,来自维基百科了。
说实话,很早之前我就听说过霍夫曼编码,除了知道它通常用于 GZIP、BZIP2、PKZIP 这些常规的压缩格式中,我还知道它通常用于压缩重复率比较高的字符数据。
大家想啊,英文就 26 个字母进行的无限组合,重复率高得一逼啊!常用的汉字也不多,2500 个左右,别问我怎么知道的,我有问过搜索引擎的。
字符重复的频率越高,霍夫曼编码的工作效率就越高!
是时候,和大家一起来了解一下霍夫曼编码的工作原理啦,毕竟一名优秀的程序员要能做到知其然知其所以然——请允许我又用了一次这句快用臭了话。
假设下面的字符串要通过网络发送。
大家应该知道,每个字符占 8 个比特,上面这串字符总共有 15 个字符,所以一共要占用 15*8=120
个比特。没有疑问吧?有疑问的同学请不好意思下。
如果我们使用霍夫曼编码的话,就可以将这串字符压缩到一个更小的尺寸。怎么做到的呢?
霍夫曼编码首先会使用字符的频率创建一棵树,然后通过这个树的结构为每个字符生成一个特定的编码,出现频率高的字符使用较短的编码,出现频率低的则使用较长的编码,这样就会使编码之后的字符串平均长度降低,从而达到数据无损压缩的目的。
拿上面这串初始字符来一步步的说明下霍夫曼编码的工作步骤。
第一步,计算字符串中每个字符的频率。
B 出现 1 次,C 出现 6 次,A 出现 5 次,D 出现 3 次。
第二步,按照字符出现的频率进行排序,组成一个队列 Q。
出现频率最低的在前面,出现频率高的在后面。
第三步,把这些字符作为叶子节点开始构建一颗树。首先创建一个空节点 z
,将最小频率的字符分配给 z 的左侧,并将频率排在第二位的分配给 z 的右侧,然后将 z 赋值为两个字符频率的和。
B 的频率最小,所以在左侧,然后是频率为 3 的 D,在右侧;然后把它们的父节点的值设为 4,子节点的频率之和。
然后从队列 Q 中删除 B 和 D,并将它们的和添加到队列中,上图中 *
表示的位置。紧接着,重新创建一个空的节点 z
,并将 4 作为左侧的节点,频率为 5 的 A 作为右侧的节点,4 与 5 的和作为父节点。
继续按照之前的思路构建树,直到所有的字符都出现在树的节点中。
第四步,对于每个非叶子节点,将 0 分配给连接线的左侧,1 分配给连接线的右侧。此时,霍夫曼树就构建完成了。霍夫曼树又称为最优二叉树,是一种带权路径长度最短的二叉树。
当树构建完毕后,我们来统计一下要发送的比特数。
1)来看字符这一列。四个字符 A、B、C、D 共计 4*8=32 比特。每个英文字母均占用一个字节,即 8 个比特。
2)来看频率这一列。A 5 次,B 1 次,C 6 次,D 3 次,一共 15 比特。
3)来看编码这一列。A 的编码为 11,对应霍夫曼树上的 15→9→5,也就是说,从根节点走到叶子节点 A,需要经过 11 这条路径;对应的 B 需要走过 100 这条路径;对应的 D 需要走过 101 这条路径;对应的 C 需要走过 0 这条路径。
4)来看长度这一列。A 的编码为 11,出现了 5 次,因此占用 10 个比特,即 1111111111
;B 的编码为 100,出现了 1 次,因此占用 3 个比特,即 100
;C 的编码为 0,出现了 6 次,因此占用 6 个比特,即 000000
;D 的编码为 101,出现了 3 次,因此占用 9 个比特,即 101101101
。
哈夫曼编码从本质上讲,是将最宝贵的资源(最短的编码)给出现概率最多的数据。在上面的例子中,C 出现的频率最高,它的编码为 0,就省下了不少空间。
结合生活中的一些情况想一下,也是这样,我们把最常用的放在手边,这样就能提高效率,节约时间。所以,我有一个大胆的猜想,霍夫曼就是这样发现编码的最优解的。
在没有经过霍夫曼编码之前,字符串“BCAADDDCCACACAC”的二进制为:
10000100100001101000001010000010100010001000100010001000100001101000011010000010100001101000001010000110100000101000011
也就是占了 120 比特。
编码之后为:
0000001001011011011111111111
占了 28 比特。
但考虑到解码,需要把霍夫曼树的结构也传递过去,于是字符占用的 32 比特和频率占用的 15 比特也需要传递过去。总体上,编码后比特数为 32 + 15 + 28 = 75
,比 120 比特少了 45 个,效率还是非常高的。
关于霍夫曼编码的 Java 示例,我在这里也贴出来一下,供大家参考。
class HuffmanNode {
int item;
char c;
HuffmanNode left;
HuffmanNode right;
}
class ImplementComparator implements Comparator<HuffmanNode> {
public int compare(HuffmanNode x, HuffmanNode y) {
return x.item - y.item;
}
}
public class Huffman {
public static void printCode(HuffmanNode root, String s) {
if (root.left == null && root.right == null && Character.isLetter(root.c)) {
System.out.println(root.c + " | " + s);
return;
}
printCode(root.left, s + "0");
printCode(root.right, s + "1");
}
public static void main(String[] args) {
int n = 4;
char[] charArray = { 'A', 'B', 'C', 'D' };
int[] charfreq = { 5, 1, 6, 3 };
PriorityQueue<HuffmanNode> q = new PriorityQueue<HuffmanNode>(n, new ImplementComparator());
for (int i = 0; i < n; i++) {
HuffmanNode hn = new HuffmanNode();
hn.c = charArray[i];
hn.item = charfreq[i];
hn.left = null;
hn.right = null;
q.add(hn);
}
HuffmanNode root = null;
while (q.size() > 1) {
HuffmanNode x = q.peek();
q.poll();
HuffmanNode y = q.peek();
q.poll();
HuffmanNode f = new HuffmanNode();
f.item = x.item + y.item;
f.c = '-';
f.left = x;
f.right = y;
root = f;
q.add(f);
}
System.out.println(" 字符 | 霍夫曼编码 ");
System.out.println("--------------------");
printCode(root, "");
}
}
本例的输出结果如下所示:
字符 | 霍夫曼编码
--------------------
C | 0
B | 100
D | 101
A | 11
给大家留个作业题吧,考虑一下霍夫曼编码的时间复杂度,知道的同学可以在留言区给出答案哈。
往期精彩回顾
适合初学者入门人工智能的路线及资料下载机器学习及深度学习笔记等资料打印机器学习在线手册深度学习笔记专辑《统计学习方法》的代码复现专辑
AI基础下载机器学习的数学基础专辑
本站qq群704220115,加入微信群请扫码: