图解Transformer【简单易懂】

Transformer由论文《Attention is All You Need》提出,广泛应用于自然语言处理和计算机视觉方向。

今天,为了方便读者学习,我们将试图把模型简化一点,并逐一介绍里面的核心概念,希望让普通读者也能轻易理解,并提供ppt下载。

课件介绍

本课件是黄海广老师的整理的深度课程的Transformer部分的授课课件。内容比较基础,适合入门。

这个课件提供原版ppt文件下载:

链接:https://pan.baidu.com/s/1HKGtDQsuLz_DMiIT2rijzQ 
提取码:3fg4

课件完整内容

e0c4e23695d8f4c18308417fba181c81.jpeg

a5fd8323bf743d102bb239b54432215d.jpeg

d825937dabfb7431c0e01ef284015e23.jpeg

fb33216435916b295ec09b0a14eacec4.jpeg

b99d5d713ba05ddb294b3e3983d14620.jpeg

51ad3edd72313a34d27101b972aefd2f.jpeg

c97be97640fa74c627c2948b85b5c76b.jpeg

14627945c6a5c57b6fcebbf77dd653cc.jpeg

bb551587444340b4059559e0f74049d4.jpeg

812fe9fa93a68042c9f4cdbe717317d3.jpeg

16b8229b85e5487ea68b18835a6c7add.jpeg

5151e1c3e2e9079bd27f22e3afc2d935.jpeg

73460e0ac7355de92a95a17987ece3df.jpeg

2c67e029e8ebd6e6501a3c2887187401.jpeg

6bc67c3a35085e5563fc7caf6b315e08.jpeg

e41c1cf0a99de82ea1401c245f966121.jpeg

7146ad5f5bff013f6c39b47c555abca9.jpeg

4e844679d31e2be9dd0b52f129039a40.jpeg

cac82b67f342b826e77a97e527c5eb13.jpeg

1341cb7ec30f71f6350ac983b2675f73.jpeg

b0917fd286674c4b41c48de162ee356f.jpeg

384ade1e301b4ce49b87dc6cca916e0c.jpeg

2ca55e24b8c553bc15a19e5fad2f8e15.jpeg

13285cc5a9d17595ec8365738d94d549.jpeg

a9102f33d2e82814a4d1a826a7a8f61f.jpeg

8263268b300287ed11d3c899de82d95c.jpeg

319b27b1111586d2055f3d1ce64df5f4.jpeg

d22b225192ef96b4b862bbf050b56c39.jpeg

9e087e5f566e2c21b56ae11bc0d7a8d2.jpeg

48185cb39cb52b8c14737776818122a9.jpeg

63ac92f6136631cdd2ace596c13d55c0.jpeg

38d3081a7b7ee6008b36c16cb59dc9f8.jpeg

39651099db0d09f5674f01064db05689.jpeg

c0f4ca5705507f6eacae8c2f9ba44cb4.jpeg

becb8901b3603fd82db48ab950ad71e0.jpeg

1e5bd5a5598c01c10a2e0510878c8ba1.jpeg

8fffe6f5437b1aa0aa1d7f4f11245cb2.jpeg

b02369eb0a43f1b53c945316228b01e4.jpeg

be8290cf56ec7283b4cbb7c3aa8f2432.jpeg

db40c94ea4112223d126d483f4b6c24a.jpeg

185a815175486639fec3247c82b7dde6.jpeg

5a20760498b019ad5a2ead728523299a.jpeg

1a52945aa19cd0af70b31eb53b7181e9.jpeg

d95ae77825ba30d566e39388d061d1de.jpeg

b1e9764ab66ce6749a987eaa15181342.jpeg

59179d9063ac82534c0c65b9d5fcbf19.jpeg

f4b28b220c7d56259e9969422b170722.jpeg

e76d21a571262bcfaf9b5d983ea4b064.jpeg

f2cdd5110665d12a208b95c2b2bb7be8.jpeg

46067d454c7a9dd095bf3e2711d8c06e.jpeg

fd459f7bf681fad90466951d925ba80c.jpeg

6febdc36f5a925cd3fa61ae73a8fe124.jpeg

5c141fefe7204870da89e2a309f32bf4.jpeg

6332b05d8a5bdecff4bc2a8bf5ff4a4b.jpeg

e786bc212c27a527ecda2359b2907687.jpeg

bb335ba6a55c82d026b3667e85050ff1.jpeg

30786d2a9bb78105406bf39c3afa2d2b.jpeg

18f6601bf8a49706982e92f9b4705157.jpeg

课件下载

这个课件提供原版ppt文件下载:

链接:https://pan.baidu.com/s/1HKGtDQsuLz_DMiIT2rijzQ
提取码:3fg4

(若链接失效:公众号回复“变形金刚”可以获取下载地址。

a74243ac13acd3c65639504335d2810d.jpeg

Transformers是一种用于自然语言处理和其他相关领域的深度学习模型。它是通过编码器-解码器结构实现的。编码器将输入序列转换为一系列隐藏状态,而解码器则根据编码器的输出和之前的上下文生成输出序列。 关于图解transformer,引用中提到的图显示了Transformer的位置编码方法,其中将两个信号交织在一起。这个图可以帮助我们更好地理解位置编码的实现方式。 此外,引用中还展示了一个包含两个堆叠编码器和解码器的Transformer结构的图示。这个图可以帮助我们了解多层Transformer的组织结构。 最后,引用中提到的训练模型的直觉可以帮助我们更好地理解Transformer的工作原理。这个直觉的图示可能显示了一些与训练有关的信息,可以帮助我们更好地理解整个前向传递过程。 综上所述,通过引用中提到的图示,我们可以更好地理解Transformer模型的一些关键概念和操作。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [【Transformer图解 Transformer](https://blog.csdn.net/sikh_0529/article/details/128968765)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值