基于Opencv的MeanShift跟踪算法实现

#include "cv.h"
#include "highgui.h"
#include <stdio.h>
#include <ctype.h>

IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0;//用HSV中的Hue分量进行跟踪
CvHistogram *hist = 0;//直方图类

int backproject_mode = 0;
int select_object = 0;
int track_object = 0;
int show_hist = 1;
CvPoint origin;
CvRect selection;
CvRect track_window;
CvBox2D track_box; // Meanshift跟踪算法返回的Box类
CvConnectedComp track_comp;
int hdims = 50; // 划分直方图bins的个数,越多越精确

float hranges_arr[] = {0,180};//像素值的范围
float* hranges = hranges_arr;//用于初始化CvHistogram类
int vmin = 10, vmax = 256, smin = 30;

void on_mouse( int event, int x, int y, int flags,void *NotUsed)//该函数用于选择跟踪目标
{
 if( !image )
  return;

 if( image->origin )
  y = image->height - y;

 if( select_object )//如果处于选择跟踪物体阶段,则对selection用当前的鼠标位置进行设置
 {
  selection.x = MIN(x,origin.x);
  selection.y = MIN(y,origin.y);
  selection.width = selection.x + CV_IABS(x - origin.x);
  selection.height = selection.y + CV_IABS(y - origin.y);

  selection.x = MAX( selection.x, 0 );
  selection.y = MAX( selection.y, 0 );
  selection.width = MIN( selection.width, image->width );
  selection.height = MIN( selection.height, image->height );
  selection.width -= selection.x;
  selection.height -= selection.y;

 }

 switch( event )
 {
 case CV_EVENT_LBUTTONDOWN://开始点击选择跟踪物体
  origin = cvPoint(x,y);
  selection = cvRect(x,y,0,0);//坐标
  select_object = 1;//表明开始进行选取
  break;
 case CV_EVENT_LBUTTONUP:
  select_object = 0;//选取完成
  if( selection.width > 0 && selection.height > 0 )
   track_object = -1;//如果选择物体有效,则打开跟踪功能

  break;
 }
}


CvScalar hsv2rgb( float hue )//用于将Hue量转换成RGB量
{
 int rgb[3], p, sector;
 static const int sector_data[][3]={{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};
 hue *= 0.033333333333333333333333333333333f;
 sector = cvFloor(hue);
 p = cvRound(255*(hue - sector));
 p ^= sector & 1 ? 255 : 0;

 rgb[sector_data[sector][0]] = 255;
 rgb[sector_data[sector][1]] = 0;
 rgb[sector_data[sector][2]] = p;

 return cvScalar(rgb[2], rgb[1], rgb[0],0);//返回对应的颜色值
}

int main( int argc, char** argv )
{
 CvCapture* capture = 0;
 IplImage* frame = 0;

 if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
  capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );//打开摄像头
 else if( argc == 2 )
  capture = cvCaptureFromAVI( argv[1] );//打开AVI文件

 if( !capture )
 {
  fprintf(stderr,"Could not initialize capturing.../n");//打开视频流失败处理
  return -1;
 }

 printf( "Hot keys: /n/tESC - quit the program/n/tc - stop the tracking/n/tb - switch to/from backprojection view/n/th - show/hide object histogram/nTo initialize tracking, select the object with mouse/n" );//打印出程序功能列表
 cvNamedWindow( "CamShiftDemo", 1 );//建立视频窗口
 cvSetMouseCallback( "CamShiftDemo", on_mouse ); // 设置鼠标回调函数

 cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );//建立滑动条
 cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 );
 cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 );

 for(;;)//进入视频帧处理主循环
 {
  int i, bin_w, c;
  frame = cvQueryFrame( capture );
  if( !frame )
   break;

  if( !image )//刚开始先建立一些缓冲区
  {

   image = cvCreateImage( cvGetSize(frame), 8, 3 );//
   image->origin = frame->origin;
   hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
   hue = cvCreateImage( cvGetSize(frame), 8, 1 );
   mask = cvCreateImage( cvGetSize(frame), 8, 1 );//分配掩膜图像空间
   backproject = cvCreateImage( cvGetSize(frame), 8, 1 );//分配反向投影图空间,大小一样,单通道
   hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 ); //分配建立直方图空间

   histimg = cvCreateImage( cvSize(320,200), 8, 3 );//分配用于画直方图的空间
   cvZero( histimg );//背景为黑色
  }

  cvCopy( frame, image, 0 );
  cvCvtColor( image, hsv, CV_BGR2HSV ); // 把图像从RGB表色系转为HSV表色系

  if( track_object )//   如果当前有需要跟踪的物体  

  {
   int _vmin = vmin, _vmax = vmax;

   cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); //制作掩膜板,只处理像素值为H:0~180,S:smin~256,V:vmin~vmax之间的部分
   cvSplit( hsv, hue, 0, 0, 0 ); // 取得H分量

   if( track_object < 0 )//如果需要跟踪的物体还没有进行属性提取,则进行选取框类的图像属性提取
   {
    float max_val = 0.f;
    cvSetImageROI( hue, selection ); // 设置原选择框
    cvSetImageROI( mask, selection ); // 设置Mask的选择框

    cvCalcHist( &hue, hist, 0, mask ); // 得到选择框内且满足掩膜板内的直方图

    cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );
    cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 ); // 对直方图转为0~255
    cvResetImageROI( hue ); // remove ROI
    cvResetImageROI( mask );
    track_window = selection;
    track_object = 1;

    cvZero( histimg );
    bin_w = histimg->width / hdims;

    for( i = 0; i < hdims; i++ )
    {
     int val = cvRound(
      cvGetReal1D(hist->bins,i)*histimg->height/255 );
     CvScalar color = hsv2rgb(i*180.f/hdims);
     cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
      cvPoint((i+1)*bin_w,histimg->height - val),color, -1, 8, 0 );//画直方图到图像空间
    }
   }

   cvCalcBackProject( &hue, backproject, hist ); // 得到hue的反向投影图

   cvAnd( backproject, mask, backproject, 0 );得到反向投影图mask内的内容
    cvCamShift( backproject, track_window,cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ),&track_comp, &track_box );//使用MeanShift算法对backproject中的内容进行搜索,返回跟踪结果
   track_window = track_comp.rect;//得到跟踪结果的矩形框

   if( backproject_mode )
    cvCvtColor( backproject, image, CV_GRAY2BGR ); // 显示模式
   if( image->origin )
    track_box.angle = -track_box.angle;
   cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 );//画出跟踪结果的位置
  }

  if( select_object && selection.width > 0 && selection.height > 0 )//如果正处于物体选择,画出选择框
  {
   cvSetImageROI( image, selection );
   cvXorS( image, cvScalarAll(255), image, 0 );
   cvResetImageROI( image );
  }

  cvShowImage( "CamShiftDemo", image );//显示视频和直方图
  cvShowImage( "Histogram", histimg );

  c = cvWaitKey(10);
  if( c == 27 )
   break;

  switch( c )
  {
  case 'b':
   backproject_mode ^= 1;
   break;
  case 'c':
   track_object = 0;
   cvZero( histimg );
   break;
  case 'h':
   show_hist ^= 1;
   if( !show_hist )
    cvDestroyWindow( "Histogram" );
   else
    cvNamedWindow( "Histogram", 1 );
   break;
  default:
   ;
  }
 }

 cvReleaseCapture( &capture );
 cvDestroyWindow("CamShiftDemo");

 return 0;
}


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/koriya/archive/2008/11/22/3347365.aspx

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1. 背景 Meanshift算法是一种基于概率密度函数的图像跟踪算法,它可以用于物体跟踪、目标跟踪等领域。本文将介绍Meanshift算法的原理和实现方式。 2. 原理 Meanshift算法是基于概率密度函数的图像跟踪算法,其基本原理是根据当前帧中目标的位置和大小,计算出目标模型的概率密度函数,然后将该函数与下一帧中的图像进行卷积,得到目标在下一帧中的位置和大小。 具体实现步骤如下: 1)选择一个初始窗口,在该窗口内计算出目标的概率密度函数。 2)在下一帧中,将原始图像和目标模型的概率密度函数进行卷积,得到新的目标位置和大小。 3)重复上述过程,直到目标跟踪结束。 3. 实现 下面是一个简单的Meanshift跟踪算法实现代码: ``` #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; using namespace std; int main() { // 读入视频 VideoCapture cap("test.mp4"); if (!cap.isOpened()) { cout << "视频读入失败" << endl; return -1; } // 初始化目标窗口 Rect trackWindow(0, 0, 0, 0); Mat frame, hsv, mask, hist, backproj; // 设置迭代终止条件 TermCriteria termCrit(TermCriteria::EPS | TermCriteria::COUNT, 10, 1); // 开始循环跟踪 while (true) { // 读入当前帧 cap >> frame; if (frame.empty()) break; // 将当前帧转换为HSV颜色空间 cvtColor(frame, hsv, COLOR_BGR2HSV); // 计算目标模型的直方图 if (trackWindow.area() <= 0) { int x = frame.cols / 2; int y = frame.rows / 2; int w = 100; int h = 100; trackWindow = Rect(x - w / 2, y - h / 2, w, h); // 提取ROI Mat roi(hsv, trackWindow); Mat maskroi; inRange(roi, Scalar(0, 60, 32), Scalar(180, 255, 255), maskroi); Mat hsv_roi(hsv, trackWindow); calcHist(&hsv_roi, 1, 0, maskroi, hist, 2, &histSize, &histRange, uniform, accumulate); normalize(hist, hist, 0, 255, NORM_MINMAX); } // 计算反向投影 calcBackProject(&hsv, 1, 0, hist, backproj, &histRange); backproj &= mask; // 调用meanshift算法 meanShift(backproj, trackWindow, termCrit); // 在图像中绘制跟踪结果 rectangle(frame, trackWindow, Scalar(0, 0, 255), 2); // 显示图像 imshow("跟踪结果", frame); // 按下ESC键退出 if (waitKey(1) == 27) break; } return 0; } ``` 在上述代码中,首先读入视频,并初始化跟踪目标的窗口。然后在循环中,对于每一帧图像,将其转换为HSV颜色空间,并计算目标模型的直方图。接着计算反向投影,并调用meanshift算法进行跟踪。最后在图像中绘制跟踪结果,并进行显示。当按下ESC键时退出程序。 4. 总结 本文介绍了Meanshift跟踪算法的原理和实现方式,以及一个简单的OpenCV C++实现代码。该算法可以用于物体跟踪、目标跟踪等领域,并且具有较高的运行效率。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值