Description
在N*N的方格棋盘放置了N个皇后,使得它们不相互攻击(即任意2个皇后不允许处在同一排,同一列,也不允许处在与棋盘边框成45角的斜线上。
你的任务是,对于给定的N,求出有多少种合法的放置方法。
Input
共有若干行,每行一个正整数N≤10,表示棋盘和皇后的数量;如果N=0,表示结束。
Output
共有若干行,每行一个正整数,表示对应输入行的皇后的不同放置数量。
Sample Input
1
8
5
0
Sample Output
1
92
10
晕死的n皇后,本来会dfs的,看了这个就忽然发现自己忘了dfs是啥东西了
#include <cstdio>
#include <cstring>
int a[13], sum, n;//a[row] = column 表示皇后放置 row 行 column 列
int abs(int a)
{
return a > 0 ? a : -a;
}
void dfs(int k)
{
if(k > n)//当放好了n个皇后的时候退入上一步
{
sum++;
return ;
}
for(int i=1; i<=n; i++)//罗列每一列的皇后进行判断
{
a[k] = i;//皇后放置在 k 行 i 列
bool ok = true;
for(int j=1; j<k; j++)//切记与 k 行之前的位置比较 k没有到达先不讨论
{
if(a[k] == a[j] || abs(k - j) == abs(a[j] - a[k]))//判断皇后不能同列,同行,对角
{
ok = false;
}
}
if(ok)//当这一列满足时查看下一行是否有可以放皇后的位置
dfs(k+1);
}
}
int main()
{
int ans[13];
for(n=1; n<=10; n++)//进行打表
{
sum = 0;//每次重新记录
dfs(1);//次次从零开始
ans[n] = sum;
}
while(scanf("%d", &n) != EOF && n)
{
printf("%d\n", ans[n]);
}
return 0;
}