无题 11

记得小时候夏天不经常是三十八九度得天气吗,那时候空调还没这么普及,我们也照样过来了,现在才三十度多的点的天气,打开微博到处都是喊热死了的,或者是随便什么话题都引起一大帮人的躁动,有这么夸张吗,现在人都是这么矫情吗,还是大家都很无聊没事干,就喜欢凑热闹,搞不懂。

 

 

 

“华为杯”第十八届中国研究生数学建模竞赛是一项全国性赛事,致力于提升研究生的数学建模与创新实践能力。数学建模是将实际问题转化为数学模型,并运用数学方法求解以解决实际问题的科学方法。该竞赛为参赛者提供了展示学术水平和团队协作精神的平台。 论文模板通常包含以下内容:封面需涵盖比赛名称、学校参赛队号、队员姓名以及“华为杯”和中国研究生创新实践系列大赛的标志;摘要部分应简洁明了地概括研究工作,包括研究问题、方法、主要结果和结论,使读者无需阅读全文即可了解核心内容;目录则列出各章节标题,便于读者快速查找;问题重述部分需详细重新阐述比赛中的实际问题,涵盖背景、原因及重要性;问题分析部分要深入探讨每个问题的内在联系与解决思路,分析各个子问题的特点、难点及可能的解决方案;模型假设与符号说明部分需列出合理假设以简化问题,并清晰定义模型中的变量和符号;模型建立与求解部分是核心,详细阐述将实际问题转化为数学模型的过程,以及采用的数学工具和求解步骤;结果验证与讨论部分展示模型求解结果,评估模型的有效性和局限性,并对结果进行解释;结论部分总结研究工作,强调模型的意义和对未来研究的建议;参考文献部分列出引用文献,遵循规范格式。 在准备竞赛论文时,参赛者需注重逻辑清晰、论述严谨,确保模型科学实用。良好的团队协作和时间管理也是成功的关键。通过竞赛,研究生们不仅锻炼了数学应用能力,还提升了团队合作、问题解决和科研写作能力。
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库,广泛应用于图像处理、计算机视觉和模式识别等领域。物体识别是OpenCV的一个重要应用场景,以下是一些常见的物体识别方法和技术: 1. **特征提取与匹配**: - **SIFT(尺度不变特征变换)**和**SURF(加速稳健特征)**:这些算法用于检测和描述局部特征,能够在图像中识别出相同的物体,即使它们的大小、旋转或光照条件发生变化。 - **ORB(定向快速旋转BRIEF)**:一种快速的特征检测和描述算法,适用于实时应用。 2. **模板匹配**: - 通过在图像中滑动一个模板(已知物体的图像),并计算模板与图像区域的相似度,来找到物体的位置。 3. **机器学习与深度学习**: - **支持向量机(SVM)**:用于分类和回归分析,可以用于物体识别任务。 - **卷积神经网络(CNN)**:深度学习模型,特别适合处理图像数据,能够自动学习图像的特征并进行分类。 4. **目标检测算法**: - **Haar级联分类器**:基于积分图和AdaBoost算法,用于实时人脸检测。 - **YOLO(You Only Look Once)**和**SSD(Single Shot MultiBox Detector)**:实时目标检测算法,能够在单次前向传播中同时进行目标定位和分类。 5. **实例分割**: - **Mask R-CNN**:在目标检测的基础上,进一步分割出目标的精确轮廓。 OpenCV提供了丰富的API和工具,可以方便地实现上述方法。以下是一个简单的示例代码,展示如何使用OpenCV进行模板匹配: ```python import cv2 import numpy as np # 读取原始图像和模板图像 original_image = cv2.imread('original_image.jpg') template = cv2.imread('template.jpg') template_gray = cv2.cvtColor(template, cv2.COLOR_BGR2GRAY) w, h = template_gray.shape[::-1] # 转换为灰度图 gray_original = cv2.cvtColor(original_image, cv2.COLOR_BGR2GRAY) # 模板匹配 result = cv2.matchTemplate(gray_original, template_gray, cv2.TM_CCOEFF_NORMED) threshold = 0.8 loc = np.where(result >= threshold) # 绘制矩形框 for pt in zip(*loc[::-1]): cv2.rectangle(original_image, pt, (pt[0] + w, pt[1] + h), (0, 255, 255), 2) # 显示结果 cv2.imshow('Detected', original_image) cv2.waitKey(0) cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值