系列文章索引
LangChain教程 - 系列文章
LangChain 是一个专为简化由大语言模型(LLM)驱动的应用程序开发的框架,提供了一整套模块和工具,帮助开发者构建、生产化和部署智能应用。LangChain 通过模块化设计,涵盖了从开发到监控的各个环节。以下是该框架的三个关键阶段:
-
开发:LangChain 提供丰富的模块、组件和第三方集成,允许开发者灵活组合来构建 LLM 应用。通过 LangGraph,可以创建复杂的有状态代理,支持流式处理和人类参与。
-
生产化:使用 LangSmith 监控、检查并优化应用链路,帮助开发者持续改进模型和应用的性能。
-
部署:通过 LangGraph Cloud 将开发的 LLM 应用转化为生产就绪的 API 或智能助手,进行高效部署。
LangChain 框架结构
LangChain 通过模块化设计,形成了一个强大的开发生态系统。每个模块有其特定功能,开发者可以根据需要灵活选择。以下是 LangChain 的主要组成部分:
1. langchain-core:基础抽象和 LangChain 表达式语言(LCEL)
langchain-core
是框架的核心,包含开发者用来构建和操作复杂链路的基础工具和抽象。这一模块提供了开发者定义 LLM 调用、任务调度、链路管理的核心功能。
- LangChain 表达式语言(LCEL):一种用于描述链路中各个步骤关系的语言。它帮助开发者轻松定义复杂的流程逻辑并将模型调用和数据处理连接起来。
2. langchain-community:第三方集成库
langchain-community
提供了与外部服务的集成,允许开发者将 LangChain 应用与其他平台或工具相结合。这些集成帮助开发者快速扩展应用的功能,如访问外部 API、连接数据库或使用外部的知识库。
3. 合作伙伴包(Partner Packages)
合作伙伴包是轻量级的集成模块,专为特定任务设计。它们仅依赖 langchain-core
,例如 langchain-openai
或 langchain-anthropic
等,主要用于特定模型的集成和优化。
- 应用场景:这些包可以减少不必要的依赖,只加载所需的功能。例如,
langchain-openai
包用于集成 OpenAI 模型,开发者只需安装该轻量包即可轻松调用最新的 LLM。
4. langchain:应用认知架构
langchain
包含应用程序的认知架构部分,包括链路、代理和数据检索策略。这些组件定义了如何将复杂任务分解为多个步骤并进行处理。
- 链路(Chains):帮助开发者定义任务执行的顺序,支持多步骤操作,如查询 LLM、处理结果等。
- 代理(Agents):代理可以动态地根据任务需求调用模型或工具,支持灵活的任务处理和信息检索。
- 检索策略:通过不同的策略从数据源中提取相关信息,如从文档或数据库中进行知识检索。
5. LangGraph:用于构建复杂的多角色应用
LangGraph
帮助开发者使用图结构(节点和边)来管理多角色、有状态的应用程序。特别适合需要处理复杂工作流的场景。
- 图形化流程管理:通过图结构将应用的每个步骤定义为一个节点,边表示步骤之间的关系,直观管理多步骤、多任务应用。
6. LangServe:部署 LangChain 链路为 REST API
LangServe
提供了将链路作为 REST API 部署的功能。开发者可以轻松将构建好的链路公开为服务接口,供外部系统调用。
- 服务化应用:支持开发者将复杂的 LLM 应用快速转换为可用的 REST API,简化生产环境下的部署和扩展。
7. LangSmith:调试、评估和监控平台
LangSmith
是一个用于监控和调试的工具,帮助开发者跟踪链路中的每一步操作,优化应用表现并调试错误。
- 实时监控:提供详尽的链路执行数据,帮助开发者评估应用的运行效果,并根据需求进行优化和调整。
实例:构建一个简单的 LLM 应用
通过下面的示例,你可以学习如何使用 LangChain 框架构建一个简单的 LLM 应用,它会根据用户输入的主题生成一段文本。
1. 安装依赖
首先,安装 langchain-community
和 langchain-openai
,以及 OpenAI 的 Python 包:
pip install -U langchain-community langchain-openai openai
2. 编写代码
接下来,编写一个 Python 脚本,调用 OpenAI 的 gpt-3.5-turbo
模型并生成文本。
from langchain_openai import ChatOpenAI # 导入对话模型
from langchain.prompts import PromptTemplate
from langchain.schema.runnable import RunnableSequence
# 初始化 OpenAI 对话模型
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.7)
# 定义提示模板
prompt_template = PromptTemplate(
input_variables=["topic"],
template="为我写一段关于 {topic} 的短文。",
)
# 创建可运行序列,将提示模板与 LLM 链接
sequence = prompt_template | llm
# 输入主题并生成文本,使用 invoke 方法
topic = "人工智能的未来"
result = sequence.invoke({"topic": topic})
# 输出生成的文本
print(result)
3. 运行应用
将以上代码保存为 langchain_example.py
,然后通过命令行运行:
python langchain_example.py
输出的文本会根据你输入的主题生成,例如:
人工智能的未来充满了无限可能。随着技术的进步,AI 将在多个领域引领创新,从自动化到医疗保健,从教育到智能城市,AI 的应用范围将不断扩展。然而,AI 的快速发展也带来了伦理和安全方面的挑战,确保技术的发展与社会需求和谐共进是未来的重要议题。
4. 解释代码
- ChatOpenAI:我们使用
ChatOpenAI
来调用gpt-3.5-turbo
对话模型,它支持多轮对话生成任务。 - PromptTemplate:定义了一个提示模板,允许动态插入用户输入的主题(如 “人工智能的未来”)。
- RunnableSequence:通过管道操作将提示模板与 LLM 链接,形成一个可以执行的序列。
- invoke:调用
invoke
方法生成结果,生成文本基于给定的主题。
通过这个教程,你可以掌握 LangChain 框架的基本功能,并通过具体的代码示例,构建简单的 LLM 应用。框架的模块化设计使得它可以轻松扩展,适应不同的项目需求。