多项式指数函数(多项式 exp)

板题:P4726 【模板】多项式指数函数(多项式 exp)

已知 g ( x ) g(x) g(x),你要求出 f ( x ) ≡ e g ( x ) ( m o d x n ) f(x)\equiv e^{g(x)} \pmod{x^n} f(x)eg(x)(modxn)

前置知识:多项式求逆多项式 ln ⁡ \ln ln泰勒展开

分析

此题使用牛顿迭代法求解。

牛顿迭代可用来求函数的零点。可以快速求出 G ( F ( x ) ) = 0 G(F(x))=0 G(F(x))=0 的零点。下面是多项式牛顿迭代公式的推导。

类似于多项式求逆,递归求解。

如果我们已经求出一个 f ( x ) f(x) f(x) 满足
G ( f ( x ) ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) G(f(x))\equiv0\pmod{x^{\lceil\frac n2\rceil}} G(f(x))0(modx2n)

要求出一个 F ( x ) F(x) F(x) 满足
G ( F ( x ) ) ≡ 0 ( m o d x n ) G(F(x))\equiv0\pmod{x^n} G(F(x))0(modxn)

容易得到
F ( x ) − f ( x ) ≡ 0 ( m o d x ⌈ n 2 ⌉ ) F(x)-f(x)\equiv0\pmod{x^{\lceil\frac n2\rceil}} F(x)f(x)0(modx2n)

进一步得到
( F ( x ) − f ( x ) ) 2 ≡ 0 ( m o d x n ) (F(x)-f(x))^2\equiv0\pmod{x^n} (F(x)f(x))20(modxn)

如果再给上式乘上 F ( x ) − f ( x ) F(x)-f(x) F(x)f(x) 的若干次方,它仍然模 x n x^n xn 等于 0 0 0

即对 i ≥ 2 i\ge2 i2,有 ( F ( x ) − f ( x ) ) i ≡ 0 ( m o d x n ) (F(x)-f(x))^i\equiv0\pmod{x^n} (F(x)f(x))i0(modxn)

G ( F ( x ) ) G(F(x)) G(F(x)) f ( x ) f(x) f(x) 处泰勒展开得
G ( F ( x ) ) ≡ ∑ i = 0 ∞ G ( i ) ( f ( x ) ) ( F ( x ) − f ( x ) ) i i ! ( m o d x n ) G(F(x))\equiv\sum\limits_{i=0}^{\infty}\dfrac{G^{(i)}(f(x))(F(x)-f(x))^i}{i!}\pmod{x^n} G(F(x))i=0i!G(i)(f(x))(F(x)f(x))i(modxn)

由上面的结论得
G ( F ( x ) ) ≡ G ( f ( x ) ) + G ′ ( f ( x ) ) ( F ( x ) − f ( x ) ) ( m o d x n ) G(F(x))\equiv G(f(x))+G'(f(x))(F(x)-f(x))\pmod{x^n} G(F(x))G(f(x))+G(f(x))(F(x)f(x))(modxn)

因为 G ( F ( x ) ) ≡ 0 ( m o d x n ) G(F(x))\equiv0\pmod{x^n} G(F(x))0(modxn)

所以
G ( f ( x ) ) + G ′ ( f ( x ) ) ( F ( x ) − f ( x ) ) ≡ 0 ( m o d x n ) G(f(x))+G'(f(x))(F(x)-f(x))\equiv0\pmod{x^n} G(f(x))+G(f(x))(F(x)f(x))0(modxn)

整理得到
F ( x ) ≡ f ( x ) − G ( f ( x ) ) G ′ ( f ( x ) ) ( m o d x n ) F(x)\equiv f(x)-\dfrac{G(f(x))}{G'(f(x))}\pmod{x^n} F(x)f(x)G(f(x))G(f(x))(modxn)


回到本题。
我们要求 f ( x ) f(x) f(x) 满足
f ( x ) ≡ e g ( x ) ( m o d x n ) f(x)\equiv e^{g(x)}\pmod{x^n} f(x)eg(x)(modxn)

两边取对数,右边移到左边得
ln ⁡ f ( x ) − g ( x ) ≡ 0 ( m o d x n ) \ln f(x)-g(x)\equiv0\pmod{x^n} lnf(x)g(x)0(modxn)
由上面牛顿迭代的式子,令 G ( f ( x ) ) = ln ⁡ f ( x ) − g ( x ) G(f(x))=\ln f(x)-g(x) G(f(x))=lnf(x)g(x)


F ( x ) ≡ f ( x ) − ln ⁡ f ( x ) − g ( x ) ( ln ⁡ f ( x ) − g ( x ) ) ′ ( m o d x n ) ≡ f ( x ) − ln ⁡ f ( x ) − g ( x ) 1 f ( x ) ( m o d x n ) ≡ f ( x ) ( 1 − ln ⁡ f ( x ) + g ( x ) ) ( m o d x n ) \begin{aligned} F(x)&\equiv f(x)-\dfrac{\ln f(x)-g(x)}{(\ln f(x)-g(x))'}\pmod{x^n}\\ &\equiv f(x)-\dfrac{\ln f(x)-g(x)}{\dfrac{1}{f(x)}}\pmod{x^n}\\ &\equiv f(x)(1-\ln f(x)+g(x))\pmod{x^n} \end{aligned} F(x)f(x)(lnf(x)g(x))lnf(x)g(x)(modxn)f(x)f(x)1lnf(x)g(x)(modxn)f(x)(1lnf(x)+g(x))(modxn)

这样,就可以递归求出 e g ( x ) e^{g(x)} eg(x) 了。

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=(1<<18)+1;
const ll mod=998244353,g=3,inv2=499122177;
int len=1,n;
ll a1[N],w,wn,a[N],ans[N],invans[N],lnans[N],da[N],inva[N];
ll ksm(ll a,ll b)
{
    ll ans=1;
    while(b){
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;
        b>>=1;
    }
    return ans;
}
void change(ll num[])
{
    for(int i=1,j=len/2;i<len-1;i++){
        if(i<j) swap(num[i],num[j]);
        int k=len/2;
        while(j>=k) j-=k,k>>=1;
        if(j<k) j+=k;
    }
}
void ntt(ll num[],int fl)
{
    for(int i=2;i<=len;i<<=1){
        if(fl==1) wn=ksm(g,(mod-1)/i);
        else wn=ksm(g,mod-1-(mod-1)/i);
        for(int j=0;j<len;j+=i){
            w=1;
            for(int k=j;k<j+i/2;k++){
                ll u=w*num[k+i/2]%mod,t=num[k];
                num[k]=(t+u)%mod;
                num[k+i/2]=(t-u+mod)%mod;
                w=w*wn%mod;
            }
        }
    }
    if(fl==-1){
        ll inv=ksm(len,mod-2);
        for(int i=0;i<len;i++) num[i]=num[i]*inv%mod;
    }
}
int read()
{
    int sum=0,c=getchar();
    while(c<48||c>57) c=getchar();
    while(c>=48&&c<=57) sum=sum*10+c-48,c=getchar();
    return sum;
}
void getinv(int n,ll a[],ll ans[])
{
	if(n==1){ans[0]=ksm(a[0],mod-2);return;}
	getinv((n+1)/2,a,ans);
	len=1;
	while(len<2*n) len*=2;
	for(int i=0;i<n;i++) a1[i]=a[i];
	for(int i=n;i<len;i++) a1[i]=0;
	change(a1),change(ans);
	ntt(a1,1),ntt(ans,1);
	for(int i=0;i<len;i++) ans[i]=ans[i]*(2-ans[i]*a1[i]%mod+mod)%mod;
	change(ans),ntt(ans,-1);
	for(int i=n;i<len;i++) ans[i]=0;
}
void getln(int n,ll a[],ll ln[])
{
	for(int i=1;i<n;i++) da[i-1]=a[i]*i;
    da[n-1]=0;
    memset(inva,0,sizeof(inva));
	getinv(n,a,inva);
	len=1;
	while(len<2*n) len*=2;
	change(da),change(inva);
	ntt(da,1),ntt(inva,1);
	for(int i=0;i<len;i++) ln[i]=da[i]*inva[i]%mod;
	change(ln),ntt(ln,-1);
	for(int i=len-1;i>=0;i--) ln[i+1]=ksm(i+1,mod-2)*ln[i]%mod;
    for(int i=n;i<len;i++) ln[i]=0;
	ln[0]=0;
}
void getsqrt(int n,ll a[],ll ans[])
{
    if(n==1){ans[0]=a[0];return;}
    getsqrt((n+1)/2,a,ans);
    len=1;
    while(len<2*n) len*=2;
    memset(invans,0,sizeof(invans));
    getinv(n,ans,invans);
    for(int i=0;i<n;i++) a1[i]=a[i];
    for(int i=n;i<len;i++) a1[i]=0;
    change(a1),change(invans);
    ntt(a1,1),ntt(invans,1);
    for(int i=0;i<len;i++) a1[i]=a1[i]*invans[i]%mod;
    change(a1),ntt(a1,-1);
    for(int i=0;i<n;i++) ans[i]=(a1[i]+ans[i])*inv2%mod;
    for(int i=n;i<len;i++) ans[i]=0;
}
void getexp(int n,ll a[],ll ans[])
{
    if(n==1){ans[0]=1;return;}
    getexp((n+1)/2,a,ans);
    len=1;
    while(len<2*n) len*=2;
    getln(n,ans,lnans);
    for(int i=0;i<n;i++) lnans[i]=(-lnans[i]+a[i]+mod)%mod;
    lnans[0]++;
    change(ans),change(lnans);
    ntt(ans,1),ntt(lnans,1);
    for(int i=0;i<len;i++) ans[i]=ans[i]*lnans[i]%mod;
    change(ans),ntt(ans,-1);
    for(int i=n;i<len;i++) ans[i]=0;
}
int main()
{
	scanf("%d",&n);
	for(int i=0;i<n;i++) scanf("%lld",&a[i]),a[i]%=mod;
	getexp(n,a,ans);
	for(int i=0;i<n;i++) printf("%lld ",ans[i]);
}
  • 6
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值