元胞自动机及生命游戏

数模美赛里面用到元胞自动机比较多,这两天主要下研究这个。 何谓自动机,说白了就是给定输入状态和前一个状态和下一个状态的转移方式,然后程序自己跑。 所以运用元胞自动机的生命游戏就是一个无玩家游戏,也就是不需要人工介入,自己跑的游戏。 元胞就类似遗传算法里的基因,也就是一个特性(一个人,一辆...

2017-01-15 11:51:51

阅读数:890

评论数:0

SVM的matlab代码及SVM的多分类的作法

SVM是常用的一种有监督的学习模型(即给你一些输入特征,告诉你这些特征的样本是属于A类,再给你一些输入特征,告诉你这些特征的样本是属于B类,现在再来一些数据,来判断它们是属于哪一类)。 它与Kmeans的区别在于kmenas是无监督的学习模型,即kmeans不需要提前知道(训练),只要你把特征给...

2016-08-25 15:43:17

阅读数:21103

评论数:24

神经网络的matlab使用

首先明确几点:1,神经网络的用处是当我不知道自变量与因变量是什么联系才用的,如果已知是线性或二次可采用其他方式拟合.                          2,神经网络相当于一个黑盒子,里面的运算过程是封闭的,也就是得不到关系式(事实上就算得到每个神经元的权值也需要再次逼近,没意义的)...

2016-08-16 17:36:05

阅读数:2094

评论数:0

关于2012年数学建模a题葡萄酒评价的分析

这道题目内容还是很丰富的,第一问两组品酒员评价结果有无显著性差异. 这就好比概率论上给你两组分别来自正态总体,让你评价有无差异类似,但是很明显现在并无法确定这两组数据是正态分布的(事实上程序跑出来不是正态分布). 这就用到成对数据检验概念,简单来说就是两组数据作差,可以认为是呈正态分布,然后 ...

2016-08-14 16:48:48

阅读数:2557

评论数:0

主成分分析的matlab代码

clc; clear all; A=xlsread('C:\Users\d e l l\Documents\MATLAB\problem four\problem two two.xls','C34:AF61'); a=size(A,1); b=size(A,2); for i=1:b S...

2016-08-12 16:55:20

阅读数:2891

评论数:1

K-MEANS的研究及matlab代码

k-means的目的:将给出的n组数据分成k类(当然一般n>=k的),显然如果n==k那么结果最好应当就是k类里面每一个类是每一个点. 注意几点:1,kmeans的k是必须已知的,也就是我必须预先知道分成几类                     2,虽然你给定的是K类,但是我最终是有可能...

2016-08-10 07:58:04

阅读数:790

评论数:0

MATLAB中数值拟合的种种办法

首先是大名鼎鼎的regress regress(Y,X,alpha) 其中alpha可省略,省略时为0.05. 简单来说,这里的y指的就是对应的函数值,注意是列向量(如果是行向量要转置),x是自变量的取值(每一列为一组),注意因为考虑常数项,所以要在原x前加上一列全为1 举个简单的例子: m=[2...

2016-04-08 23:55:06

阅读数:1906

评论数:0

云模型及其运用

云模型是由中国工程院院士李德毅提出的,处理定性概念与定量描述的不确定转换模型。 简单来说就是云就是一个种群,一个分布,而云滴就是其中的一个数据,一个具体的点,而这个点出现在这个分布中是有一定的概率的。 云模型用3个数据来表示其特征: 期望:Ex,云滴在空间分布的期望。 熵:不确定性程度,用En表示...

2016-04-04 22:53:34

阅读数:3084

评论数:0

最小二乘法(c语言实现线性,matlab进行拟合)及相关系数的求解

现在给定n个点,(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)..(xn,yn).现在希望得到一条最好的曲线(也就是求一个函数关系式~~)能尽可能的描述这n个点(不一定所有点都经过,但是总的拟合最小) 现在探讨什么叫总的拟合误差最小: 为了方便,我们考虑最简单的线性...

2016-03-31 13:01:26

阅读数:6666

评论数:0

蚁群算法解决tsp问题

控制蚁群算法走向的关键是信息素,信息素类似遗传算法的适应性函数,类似退火算法的评价函数,影响着其中一只蚂蚁的下一步的选择。 蚂蚁:类似遗传算法的染色体,就是一条解,在tsp问题中蚂蚁的路径就是tsp的解。 信息素:评价函数,与路径成反比 蚂蚁数量:一次迭代有多少只蚂蚁在跑(注意不是一起跑,而是先后...

2016-03-20 22:45:33

阅读数:5661

评论数:1

电脑刚才崩了,赶紧先把东西传到CSDN

#include #include #include #include #include #include #include #define carnumber 10//小车数量 #define cities 10//visio #define MAX 100//最大迭代次数 #de...

2016-03-11 16:53:42

阅读数:324

评论数:0

退火算法解决tsp问题

首先强烈推荐一篇博文http://www.cnblogs.com/heaad/archive/2010/12/20/1911614.html 个人感觉退火算法明显比遗传算法理解简单,实现也更加方便. 首先上公式: P(dE) = exp( dE/(kT) )  p(de)是指在当前的策...

2016-03-01 20:20:00

阅读数:1247

评论数:0

遗传算法解决背包问题

//总体思想与之前的相似,评价函数就是物品的价值之和,但要注意一旦物品的重量大于背包的重量,那么该条染色体的幸存概率为0 //基因就是每一个物品是否选择,这里默认有10条染色体在比较,并且每一条染色体上的第i个基因就是代表第i个物品是否选择 //突变就是随机选择的染色体的随机位置由0变1,由1...

2016-02-29 23:10:28

阅读数:1687

评论数:2

遗传算法解决tsp问题

本文主要介绍遗传算法的一些基本思想,主要是代码思想方面的,并不用于考试....在我的资源中可以找到一份课件(并不是我们学校的,是老师给的,我们貌似并不开这门课) 另外会在下一篇附上用遗传算法解决tsp问题的代码。 遗传算法的思想其实和生物学有密切的联系(话说我高中选的是生物,已经忘光了哈),遗传算...

2016-02-29 00:04:25

阅读数:2230

评论数:3

提示
确定要删除当前文章?
取消 删除
关闭
关闭