这道题目内容还是很丰富的,第一问两组品酒员评价结果有无显著性差异.
这就好比概率论上给你两组分别来自正态总体,让你评价有无差异类似,但是很明显现在并无法确定这两组数据是正态分布的(事实上程序跑出来不是正态分布).
这就用到成对数据检验概念,简单来说就是两组数据作差,可以认为是呈正态分布,然后
针对这题就是先求每一组对于不同酒的打分(组内取平均数即可),然后得到两组数据这两组数据做差,(所有差值平均-0)/标准差/sqrt(n)得到的数值与查表得到的数值检验,如果小就接受。
为了严谨也可以对得到的差值进行正态性检验。
matlab有函数可以,这是我搜到比较好的介绍网站http://www.cnblogs.com/djcsch2001/archive/2012/02/05/2339199.html。
当然也可以进行符号与 秩的检验,反正对于程序员来说就是使用不同的函数罢了,总之不要直接把两组数据当做正态分布。
第二问是我们使用了PCA+kmeans,步骤就是先降维,再根据葡萄酒理化指标降维得到的各主成分的得分来聚类,聚类玩好坏的评定根据葡萄酒的质量来.
第三问重点在于皮尔逊相关系数矩阵的求解,这也给求解多元线性回归提供了思路
(1)若你确定