冒泡排序(bubblesort)
思路
无论从大到小还是从小到大,都是先排最尾部的数然后依次往前。时间复杂度为 O ( N 2 ) O(N^{2}) O(N2)
代码
#include<iostream>
using namespace std;
//冒泡实现从大到小
int bubblesort(int arr[],int n)
{
//两次循环:i遍历n次,j遍历n次,故时间复杂度为O(N*N)
for (int i = 0; i <n - 1; i++)
{
for (int j = 0; j < n - 1 - i; j++)
{
//相邻位置前一个比后一个小则交换
if (arr[j] < arr[j + 1])
{
int temp = arr[j + 1];
arr[j + 1] = arr[j];
arr[j] = temp;
}
}
//打印每一次冒泡结果
for (int i = 0; i < n; i++)
{
cout << arr[i] << "";
}
cout << endl;
}
return 0;
}
//测试用例
int main()
{
int arr[7] = { 6,3,2,4,1,5,7 };
bubblesort(arr,7);
return 0;
}
选择排序
思路
时间复杂度为 O ( N 2 ) O(N^{2}) O(N2)
代码
#include<iostream>
using namespace std;
/*选择排序实现从小到大,时间复杂度为O(N*N)*/
int selectsort(int arr[], int n)
{
for (int i = 0; i < n ; i++)
{
int tempmin = i;
for (int j = i; j < n ; j++)
{
//找出j开始的最小数放在arr[tempmin]
if (arr[j] < arr[tempmin])
tempmin = j;
}
//将找到的tempmin放置在i位置上
if (arr[i] > arr[tempmin])
{
int temp = arr[i];
arr[i] = arr[tempmin];
arr[tempmin] = temp;
}
}
//输出排好的数组
for (int i = 0; i < n; i++)
{
cout << arr[i] << "";
}
cout << endl;
cout << "-------------------" << endl;
return 0;
}
//测试用例
int main()
{
int arr[6] = { 2,6,3,5,1,7 };
selectsort(arr, 6);
return 0;
}
插入排序
思路
时间复杂度总体为 O ( N 2 ) O(N^{2}) O(N2)。插入排序的时间复杂度与数据状况有关,最好情况是 O ( N ) O(N) O(N)最差情况为 O ( N 2 ) O(N^{2}) O(N2),考虑算法性能时一律按照最差算。
代码
#include<iostream>
using namespace std;
int insertsort(int arr[], int len)
{
for (int i = 0; i < len-1; i++)//i为有序数组的最后一个元素
{
int temp = arr[i + 1];//temp为待插入元素,初值为arr[i + 1]
int j = i;
//寻找插入位置
while (j >= 0 && temp < arr[j])
{
arr[j + 1] = arr[j];//大于temp的元素往后移动
j--;
}
arr[j + 1] = temp;//temp后移
for (int i = 0; i < len; i++)
{
cout << arr[i] << "";
}
cout << endl;
}
cout << "-------------------" << endl;
//输出排好的数组
for (int i = 0; i < len; i++)
{
cout << arr[i] << "";
}
cout << endl;
return 0;
}
//测试用例
int main()
{
int arr[6] = { 2,6,3,5,1,7 };
insertsort(arr, 6);
return 0;
}
总结
以上三种排序时间复杂度均为 O ( N 2 ) O(N^{2}) O(N2),冒泡排序和插入排序都具有稳定性,选择排序不稳定。工程上,冒泡和选择排序应用较少。