算法——常用排序算法(上)(C++实现)

冒泡排序(bubblesort)

思路

无论从大到小还是从小到大,都是先排最尾部的数然后依次往前。时间复杂度为 O ( N 2 ) O(N^{2}) O(N2)

代码

#include<iostream>
using namespace std;
//冒泡实现从大到小
int bubblesort(int arr[],int n)
{
	//两次循环:i遍历n次,j遍历n次,故时间复杂度为O(N*N)
	for (int i = 0; i <n - 1; i++)
	{
		for (int j = 0; j < n - 1 - i; j++)
		{
			//相邻位置前一个比后一个小则交换
			if (arr[j] < arr[j + 1])
			{
				int temp = arr[j + 1];
				arr[j + 1] = arr[j];
				arr[j] = temp;
			}
		}
		//打印每一次冒泡结果
		for (int i = 0; i < n; i++)
		{
			cout << arr[i] << "";
		}
		cout << endl;
	}
	return 0;
}
//测试用例
int main()
{
	int arr[7] = { 6,3,2,4,1,5,7 };
	bubblesort(arr,7);
	return 0;
}

选择排序

思路

时间复杂度为 O ( N 2 ) O(N^{2}) O(N2)

代码

#include<iostream>
using namespace std;
/*选择排序实现从小到大,时间复杂度为O(N*N)*/
int selectsort(int arr[], int n)
{
	for (int i = 0; i < n ; i++)
	{
		int tempmin = i;
		for (int j = i; j < n  ; j++)
		{
			//找出j开始的最小数放在arr[tempmin]
			if (arr[j] < arr[tempmin])
				tempmin = j;	
		}
		//将找到的tempmin放置在i位置上
		if (arr[i] > arr[tempmin])
		{
			int temp = arr[i];
			arr[i] = arr[tempmin];
			arr[tempmin] = temp;
		}
	}
	//输出排好的数组
	for (int i = 0; i < n; i++)
	{
		cout << arr[i] << "";
	}
	cout << endl;
	cout << "-------------------" << endl;
	return 0;
}
//测试用例
int main()
{
	int arr[6] = { 2,6,3,5,1,7 };
	selectsort(arr, 6);
	return 0;
}

插入排序

思路

时间复杂度总体为 O ( N 2 ) O(N^{2}) O(N2)。插入排序的时间复杂度与数据状况有关,最好情况是 O ( N ) O(N) O(N)最差情况为 O ( N 2 ) O(N^{2}) O(N2),考虑算法性能时一律按照最差算。

代码


#include<iostream>
using namespace std;
int insertsort(int arr[], int len)
{
	for (int i = 0; i < len-1; i++)//i为有序数组的最后一个元素
	{
		int temp = arr[i + 1];//temp为待插入元素,初值为arr[i + 1]
		int j = i;
		//寻找插入位置
		while (j >= 0 && temp < arr[j])
		{
			arr[j + 1] = arr[j];//大于temp的元素往后移动
			j--;
		}
		arr[j + 1] = temp;//temp后移
		for (int i = 0; i < len; i++)
		{
			cout << arr[i] << "";
		}
		cout << endl;
	}
	cout << "-------------------" << endl;
	//输出排好的数组
	for (int i = 0; i < len; i++)
	{
		cout << arr[i] << "";
	}
	cout << endl;
	return 0;
}
//测试用例
int main()
{
	int arr[6] = { 2,6,3,5,1,7 };
	insertsort(arr, 6);
	return 0;
}

总结

以上三种排序时间复杂度均为 O ( N 2 ) O(N^{2}) O(N2),冒泡排序和插入排序都具有稳定性,选择排序不稳定。工程上,冒泡和选择排序应用较少。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值