麦克斯韦方程组的场形式和电路形式

本文首次在公众号【零妖阁】上发表,为了方便阅读和分享,我们将在其他平台进行自动同步。由于不同平台的排版格式可能存在差异,为了避免影响阅读体验,建议如有排版问题,可前往公众号查看原文。感谢您的阅读和支持!

麦克斯韦方程的场形式

普通的麦克斯韦方程一般由下面六种场量表示

E \mathcal E E,电场强度,Electric intensity (V/m)
H \mathcal H H,磁场强度,Magnetic intensity (A/m)
D \mathcal D D,电通密度,Electric flux density (C/m 2 ^2 2
B \mathcal B B,磁通密度,Magnetic flux density (Wb/m 2 ^2 2, T(特斯拉))
J \mathcal J J,电流密度,Electric current density (A/m 2 ^2 2
q v q_v qv,电荷密度,Electric charge density (C/m 3 ^3 3

麦克斯韦方程
∇ × E = − ∂ B ∂ t ; ∇ ⋅ B = 0 ; \nabla \times \mathcal E = -\frac{\partial\mathcal B}{\partial t}; \quad \nabla \cdot \mathcal B = 0; ×E=tB;B=0;
∇ × H = ∂ D ∂ t + J ; ∇ ⋅ D = q v . \nabla \times \mathcal H = \frac{\partial\mathcal D}{\partial t} + \mathcal J; \quad \nabla \cdot \mathcal D = q_v. ×H=tD+J;D=qv.

从上面的麦克斯韦方程中可以推出表示电荷守恒的连续性方程

∇ ⋅ J = − ∂ q v ∂ t \nabla \cdot \mathcal J = -\frac{\partial q_v}{\partial t} J=tqv

麦克斯韦方程的积分形式

根据旋度定理(斯托克斯定理)和散度定理

∫ S ∇ × F ⋅ d s = ∮ C F ⋅ d l \int_{\rm S} \nabla \times \mathbf F \cdot \mathrm d \mathbf s = \oint_{\rm C} \mathbf F \cdot \mathrm d \mathbf l S×Fds=CFdl
∫ V ∇ ⋅ F d v = ∮ S F ⋅ d s \int_{\rm V} \nabla \cdot \mathbf F \mathrm dv = \oint_{\rm S} \mathbf F \cdot \mathrm d \mathbf s VFdv=SFds

  • 在第一个式子中一般使 d l \mathrm d \mathbf l dl 绕右手定则环绕 d s \mathrm d \mathbf s ds
  • 在第二个式子中一般使 d s \mathrm d \mathbf s ds 表示从一闭合面指向外。

得到麦克斯韦方程的积分形式
∮ C E ⋅ d l = − d d t ∫ S B ⋅ d s ; ∮ S B ⋅ d s = 0 ; \oint_{\rm C} \mathcal E \cdot \mathrm d \mathbf l = -\frac{\mathrm d }{\mathrm d t} \int_{\rm S} \mathcal B \cdot \mathrm d \mathbf s; \quad \oint_{\rm S} \mathcal B \cdot \mathrm d \mathbf s = 0; CEdl=dtdSBds;SBds=0;
∮ C H ⋅ d l = − d d t ∫ S D ⋅ d s + ∫ S J ⋅ d s ; ∮ S D ⋅ d s = ∫ V q v d v ; \oint_{\mathrm C} \mathcal H \cdot \mathrm d \mathbf l = -\frac{\mathrm d }{\mathrm d t} \int_{\mathrm S} \mathcal D \cdot \mathrm d \mathbf s + \int_{\mathrm S} \mathcal J \cdot \mathrm d \mathbf s; \quad \oint_{\mathrm S} \mathcal D \cdot \mathrm d \mathbf s = \int_{\mathrm V} q_v \mathrm d v; CHdl=dtdSDds+SJds;SDds=Vqvdv;

连续性方程的积分形式
∮ S J ⋅ d s = − d d t ∫ V q v d v \quad \oint_{\rm S} \mathcal J \cdot \mathrm d \mathbf s = -\frac{\rm d }{\mathrm d t} \int_{\rm V} q_v \mathrm dv SJds=dtdVqvdv

麦克斯韦方程的电路形式

每一种场量对应一种电路量(积分量),因此也有六种电路量
v v v,电压,Voltage (V)
u u u,磁势,Magnetomotive force(A)
ψ e \psi^e ψe,电通,Electric flux(C)
ψ \psi ψ,磁通,Magnetic flux(Wb)
i i i,电流,Electric current (A)
q q q,电荷,Electric charge (C)
注意观察六种场量和六种电路量的单位量纲。

六种场量和六种电路量之间的明确关系
v = ∫ E ⋅ d l ; u = ∫ H ⋅ d l ; v=\int \mathcal E \cdot \mathrm d \mathbf l; \quad u=\int \mathcal H \cdot \mathrm d \mathbf l; v=Edl;u=Hdl;
ψ e = ∬ D ⋅ d s ; ψ = ∬ B ⋅ d s ; \psi^e=\iint\mathcal D\cdot \mathrm d \mathbf s; \quad \psi=\iint\mathcal B\cdot \mathrm d \mathbf s; ψe=Dds;ψ=Bds;
i = ∬ J ⋅ d s ; q = ∭ q v d v . i=\iint\mathcal J\cdot \mathrm d \mathbf s; \quad q=\iiint q_v \mathrm dv. i=Jds;q=qvdv.

  • 线积分量,如电压,习惯将积分路径的起点作为正方向;
  • 对于面积分量,如电流,习惯取 d s \mathrm d \mathbf s ds 的方向作为正方向。

因此可以给出麦克斯韦方程的场和电路的混合形式

∮ C E ⋅ d l = − d ψ d t ; ∮ S B ⋅ d s = 0 ; \oint_{\rm C} \mathcal E \cdot \mathrm d \mathbf l = -\frac{\mathrm d \psi}{\mathrm d t}; \quad \oint_{\rm S} \mathcal B \cdot \mathrm d \mathbf s = 0; CEdl=dtdψ;SBds=0;
∮ C H ⋅ d l = d ψ e d t + i ; ∮ S D ⋅ d s = q ; \oint_{\mathrm C} \mathcal H \cdot \mathrm d \mathbf l = \frac{\mathrm d \psi^e}{\mathrm d t} + i; \quad \oint_{\mathrm S} \mathcal D \cdot \mathrm d \mathbf s = q; CHdl=dtdψe+i;SDds=q;

连续性方程的场和电路的混合形式

∮ S J ⋅ d s = − d q d t \quad \oint_{\rm S} \mathcal J \cdot \mathrm d \mathbf s = -\frac{\mathrm d q}{\mathrm d t} SJds=dtdq

∑ \sum 表示线积分在一闭合曲线上的总和,或者面积分在一闭合面上的总和。那么麦克斯韦方程的电路形式

∑ v = − d ψ d t ; ∑ ψ = 0 ; \sum v = -\frac{\mathrm d \psi}{\mathrm d t}; \quad \sum \psi = 0; v=dtdψ;ψ=0;
∑ u = d ψ e d t + i ; ∑ ψ e = q ; \sum u = \frac{\mathrm d \psi^e}{\mathrm d t} + i; \quad \sum \psi^e = q; u=dtdψe+i;ψe=q;

上面的第一个式子是 Kirchhoff 电压定律。

连续性方程的电路形式

∑ i = − d q d t \sum i = -\frac{\mathrm d q}{\mathrm d t} i=dtdq

上面的式子是 Kirchhoff 电流定律。

总结

  • 公式一:法拉第感应定律,说明变化的磁通将在围绕它的路径中感应出电压;
  • 公式二:安培电流定律扩展到时间变化的情况,是磁强度和磁势的不完整定义;
  • 公式三:磁通无“磁通源”,磁通线没有始点,也没有终点;
  • 公式四:高斯定律,电通线开始于电荷,终止于电荷;
  • 公式五:电荷守恒定律,说明电荷既不能产生,也不能消灭,而只能传输。

参考文献

[1] Roger F. Harrington. Time-Harmonic Electromagnetic Fields [M].

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值