求导链式法则证明

求导链式法则证明

链式法则

对 于 一 元 连 续 函 数 y = f ( u ) , 如 果 f ( u ) 在 u = g ( x ) 处 可 导 且 u 在 g ( x ) = x 0 处 可 导 , 那 么 复 合 函 数 ( f ∘ g ) ( x ) = f ( g ( x ) ) 在 x 0 处 可 导 , 且 ( f ∘ g ) ′ ( x ) = f ′ ( g ( x ) ) ⋅ g ′ ( x ) 即 Δ y Δ x = Δ y Δ u ⋅ Δ u Δ x \begin{aligned} &对于一元连续函数y=f(u),如果f(u)在u=g(x)处可导且u在g(x)=x_0处可导,\\ 那么&复合函数(f\circ{g})(x)=f(g(x))在x_0处可导,且(f\circ{g})'(x)=f'(g(x))\cdot{g'(x)} \\ 即& \frac{\Delta{y}}{\Delta{x}} = \frac{\Delta{y}}{\Delta{u}}\cdot \frac{\Delta{u}}{\Delta{x}} \end{aligned} y=f(u)f(u)u=g(x)ug(x)=x0(fg)(x)=f(g(x))x0(fg)(x)=f(g(x))g(x)ΔxΔy=ΔuΔyΔxΔu

依据

若 l i m Δ x → 0 f ( x ) = a , l i m Δ x → 0 g ( x ) = b , 则 l i m Δ x → 0 f ( x ) g ( x ) = l i m Δ x → 0 f ( x ) l i m Δ x → 0 g ( x ) = a b (1) \begin{aligned} &若\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}f(x)=a,\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}g(x)=b, \\ &则\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}f(x)g(x)=\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}f(x)\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}g(x)=ab \tag{1} \end{aligned} Δx0limf(x)=a,Δx0limg(x)=b,Δx0limf(x)g(x)=Δx0limf(x)Δx0limg(x)=ab(1)

对 于 连 续 函 数 u ( x ) , Δ x → 0 时 , u ( x ) → 0 (2) \begin{aligned} 对于连续函数u(x),\Delta{x}\rightarrow{0}时,u(x)\rightarrow{0} \tag{2} \end{aligned} u(x)Δx0u(x)0(2)

证明

当 x 变 化 Δ x 时 , 有 Δ u = g ( x + Δ x ) − g ( x ) , 那 么 Δ y = f ( x + Δ u ) − f ( x ) 。 利 用 分 式 Δ y Δ x = Δ y Δ u ⋅ Δ u Δ x 证 明 : \begin{aligned} &当x变化\Delta{x}时,有\Delta{u}=g(x+\Delta{x})-g(x),\\ 那么&\Delta{y}=f(x+\Delta{u})-f(x)。利用分式\frac{\Delta{y}}{\Delta{x}}=\frac{\Delta{y}}{\Delta{u}}\cdot \frac{\Delta{u}}{\Delta{x}} \\ 证明&: \\ \end{aligned} xΔxΔu=g(x+Δx)g(x)Δy=f(x+Δu)f(x)ΔxΔy=ΔuΔyΔxΔu:

d y d x = l i m Δ x → 0 Δ y Δ x = l i m Δ x → 0 Δ y Δ u ⋅ Δ u Δ x = l i m Δ x → 0 Δ y Δ u ⋅ l i m Δ x → 0 Δ u Δ x = l i m Δ u → 0 Δ y Δ u ⋅ l i m Δ x → 0 Δ u Δ x = d y d u ⋅ d u d x \begin{aligned} \frac{dy}{dx}&=\mathop{lim}\limits_{\Delta{x}\rightarrow{0}}\frac{\Delta{y}}{\Delta{x}} \\ &= \mathop{lim}\limits_{\Delta{x}\rightarrow{0}}\frac{\Delta{y}}{\Delta{u}}\cdot \frac{\Delta{u}}{\Delta{x}} \\ &= \mathop{lim}\limits_{\Delta{x}\rightarrow{0}}\frac{\Delta{y}}{\Delta{u}}\cdot \mathop{lim}\limits_{\Delta{x}\rightarrow{0}}\frac{\Delta{u}}{\Delta{x}} \\ &= \mathop{lim}\limits_{\Delta{u}\rightarrow{0}}\frac{\Delta{y}}{\Delta{u}}\cdot \mathop{lim}\limits_{\Delta{x}\rightarrow{0}}\frac{\Delta{u}}{\Delta{x}} \\ &= \frac{dy}{du}\cdot \frac{du}{dx} \end{aligned} dxdy=Δx0limΔxΔy=Δx0limΔuΔyΔxΔu=Δx0limΔuΔyΔx0limΔxΔu=Δu0limΔuΔyΔx0limΔxΔu=dudydxdu

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值