Labyrinth
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1061 Accepted Submission(s): 460
Problem Description
度度熊是一只喜欢探险的熊,一次偶然落进了一个m*n矩阵的迷宫,该迷宫只能从矩阵左上角第一个方格开始走,只有走到右上角的第一个格子才算走出迷宫,每一次只能走一格,且只能向上向下向右走以前没有走过的格子,每一个格子中都有一些金币(或正或负,有可能遇到强盗拦路抢劫,
度度熊身上金币可以为负,需要给强盗写欠条),度度熊刚开始时身上金币数为0,问度度熊走出迷宫时候身上最多有多少金币?
Input
输入的第一行是一个整数T(T < 200),表示共有T组数据。
每组数据的第一行输入两个正整数m,n(m<=100,n<=100)。接下来的m行,每行n个整数,分别代表相应格子中能得到金币的数量,每个整数都大于等于-100且小于等于100。
每组数据的第一行输入两个正整数m,n(m<=100,n<=100)。接下来的m行,每行n个整数,分别代表相应格子中能得到金币的数量,每个整数都大于等于-100且小于等于100。
Output
对于每组数据,首先需要输出单独一行”Case #?:”,其中问号处应填入当前的数据组数,组数从1开始计算。
每组测试数据输出一行,输出一个整数,代表根据最优的打法,你走到右上角时可以获得的最大金币数目。
每组测试数据输出一行,输出一个整数,代表根据最优的打法,你走到右上角时可以获得的最大金币数目。
Sample Input
2 3 4 1 -1 1 0 2 -2 4 2 3 5 1 -90 2 2 1 1 1 1
Sample Output
Case #1: 18 Case #2: 4
题解:找最大值问题,考虑dp解法。对于第一列,只能是从上向下走(从下向上走结果一样),可以求出第一列每一行的金币总数。第二列到第n列每一个点有三种走法:1.从下面走来的2.从上面走来的3.从左边走来的。要求第一行第n列的最大值,就要求出每一列中每一行的最大值,累计到最后一列便是答案。
两种走法:1.每一列从上往下走dp1[i] = max(dp1[i-1],Map[i][j-1])+Map[i][j];
2.每一列从下往上走dp2[i] = max(dp2[i+1],Map[i][j-1])+Map[i][j];
每一个点的值是dp1和dp2中的最大值。
code:
#include<iostream>
#include<cstring>
#include<stack>
#include<algorithm>
#include<cmath>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;
int Map[110][110],dp1[110],dp2[110];
int main() {
int t,ans = 1;
cin >> t;
while(t--)
{
int m,n,i,j;
cin >> m >> n;
for(i = 1;i <= m;i++)
for(j = 1;j <= n;j++) cin >> Map[i][j];
for(i = 2;i <= m;i++)
{
Map[i][1] += Map[i-1][1];
}
for(j = 2;j <= n;j++)
{
dp1[0] = dp2[0] = dp1[m+1] = dp2[m+1] = -99999999;
for(i = 1;i <= m;i++)
{
dp1[i] = max(dp1[i-1],Map[i][j-1])+Map[i][j];
}
for(i = m;i >= 1;i--) dp2[i] = max(dp2[i+1],Map[i][j-1])+Map[i][j];
for(i = 1;i <= m;i++) Map[i][j] = max(dp1[i],dp2[i]);
}
printf("Case #%d:\n%d\n",ans++,Map[1][n]);
}
return 0;
}
#include<cstring>
#include<stack>
#include<algorithm>
#include<cmath>
#include<map>
#define INF 0x3f3f3f3f
using namespace std;
int Map[110][110],dp1[110],dp2[110];
int main() {
int t,ans = 1;
cin >> t;
while(t--)
{
int m,n,i,j;
cin >> m >> n;
for(i = 1;i <= m;i++)
for(j = 1;j <= n;j++) cin >> Map[i][j];
for(i = 2;i <= m;i++)
{
Map[i][1] += Map[i-1][1];
}
for(j = 2;j <= n;j++)
{
dp1[0] = dp2[0] = dp1[m+1] = dp2[m+1] = -99999999;
for(i = 1;i <= m;i++)
{
dp1[i] = max(dp1[i-1],Map[i][j-1])+Map[i][j];
}
for(i = m;i >= 1;i--) dp2[i] = max(dp2[i+1],Map[i][j-1])+Map[i][j];
for(i = 1;i <= m;i++) Map[i][j] = max(dp1[i],dp2[i]);
}
printf("Case #%d:\n%d\n",ans++,Map[1][n]);
}
return 0;
}