POJ 2479

本文详细解析了一道算法题目,旨在求解两个不相交的连续子序列的最大和。通过定义A[i]和B[i]来分别记录以i开始和结束的最大连续子序列和,并引入C[i]和D[i]来跟踪当前位置前后的最大连续子序列和,最终通过遍历找到A[i-1]+C[i]的最大值。
摘要由CSDN通过智能技术生成

Maximum sum

Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 45591 Accepted: 14088

Description

Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:

Your task is to calculate d(A).

Input

The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input. 
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.

Output

Print exactly one line for each test case. The line should contain the integer d(A).

Sample Input

1

10
1 -1 2 2 3 -3 4 -4 5 -5

Sample Output

13

Hint

In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer. 

Huge input,scanf is recommended.

 

题意:求两个不相交的连续子序列的最大和。

思路:求连续子序列的最大和的变形问题,分别求出[s1,t1]的最大和以及[s2,t2]的最大和。

设A[i]为以i开始的最大连续子序列的和,A[i] = max(a[i], A[i-1]+a[i]),

B[i]为以i结尾的最大连续子序列的和,B[i] = max(a[i], B[i+1]+a[i])。

普通连续子序列问题,使用循环查找A中最大值作为解。而本题中需要知道不相交的最大和,即A[i-1]+B[i]中最大的值。

设置C[i]、D[i]分别为以i开始、以i结尾的当前位置出现过的最大连续子序列的和。作用相当于通过循环找到A[i]位置之前的最大值。D[i] = max(D[i-1], A[i]),C[i] = max(C[i+1], B[i])。

 

程序:

#include<cstring>
#include<algorithm>
#include<queue>
#include<iostream>
#include<cstdio>
#define MAXN 50010
#define INF -10000000
using namespace std;

int a[MAXN];
int A[MAXN], B[MAXN], C[MAXN], D[MAXN];

int main(){
    int t;
    scanf("%d", &t);
    while(t--){
        int n;
        scanf("%d", &n);
        for (int i = 1;i <= n;i++){
            scanf("%d", &a[i]);
        }
        A[1] = a[1];
        for (int i = 2;i <= n;i++){
            A[i] = max(a[i], A[i-1]+a[i]);
        }
        D[1] = A[1];
        for (int i = 2;i <= n; i++){
            D[i] = max(D[i-1], A[i]);
        }
        B[n] = a[n];
        for (int j = n-1;j >= 1;j--){
            B[j] = max(a[j], B[j+1]+a[j]);
        }
        C[n] = B[n];
        for (int i = n-1;i >= 1; i--){
            C[i] = max(C[i+1], B[i]);
        }
        int mm = INF;
        for(int i = 2;i <= n;i++){
            mm = max(mm, A[i-1] + C[i]);
        }
        printf("%d\n", mm);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值