风中落泪的花

改变世界

排序:
默认
按更新时间
按访问量

ShuffleNet V2:从理论复杂度到实用设计准则

 近日,旷视科技提出针对移动端深度学习的第二代卷积神经网络 ShuffleNet V2。研究者指出过去在网络架构设计上仅注重间接指标 FLOPs 的不足,并提出两个基本原则和四项准则来指导网络架构设计,最终得到了无论在速度还是精度上都超越先前最佳网络(例如 ShuffleNet V1、Mobile...

2018-07-29 20:03:47

阅读数:476

评论数:0

优化算法总结-深度学习

优化算法总结 超参数(Hyper-Parameter)是困扰神经网络训练的问题之一,因为这些参数不可通过常规方法学习获得。 神经网络经典五大超参数: 学习率(Leraning Rate)、权值初始化(Weight Initialization)、网络层数(Layers) 单层神经元数(Un...

2018-07-18 19:44:36

阅读数:28

评论数:0

使用Raspberry Pi,Arduino和Python进行活体检测检测

生物识别漏洞 几乎所有人脸识别系统都有一个明显的漏洞 - 像这样的硅胶面具: 被视为真面目。此外,人们在戴着乳胶面具时抢劫银行 并欺骗移民,乳胶面具变得越来越复杂和随时可用。我买了这个低端面具: 在伦敦一家服装店约30英镑。推销员告诉我,大都会警察每隔几周就会联系一名戴着面具犯罪的...

2018-07-07 17:29:13

阅读数:146

评论数:0

dropout的隐式偏置(为什么要使用dropout)

现代的深度神经网络通常具有海量参数,甚至高于训练数据的大小。这就意味着,这些深度网络有着强烈的过拟合倾向。缓解这一倾向的技术有很多,包括L1、L2正则、及早停止、组归一化,以及dropout。在训练阶段,dropout随机丢弃隐藏神经元及其连接,以打破神经元间的共同适应。尽管dropout在深度神...

2018-06-30 17:46:16

阅读数:88

评论数:0

DenseNet在caffe1.0中的应用遇到的问题Message type "caffe.PoolingParameter" has no field named "ceil_mode"

参考:https://blog.csdn.net/hjxu2016/article/details/79806649 问题1.没有 “ceil_mode”. [libprotobuf ERROR google/protobuf/text_format.cc:245] Error parsi...

2018-06-27 10:38:32

阅读数:39

评论数:0

RGBDface相关0625

深度模型加速新思路 思路十分直观:根据样本的复杂度把CNN当作一个deep cascade,简单的样本只需要使用浅层的特征即可做出正确的分类,然而复杂的样本需要多层网络才可以判断。这样的方式比起之前使用多个网络做cascade的方式而言,可以共享大量的参数。如下图所示: 在[2]中,...

2018-06-25 20:28:01

阅读数:21

评论数:0

ShuffleNet MobileNet 在caffe训练加速方法

ShuffleNet参考:https://github.com/farmingyard/ShuffleNe1. 1.将cpp 和cu文件复制到caffe/src/caffe/layers目录下,将hpp文件复制到caffe/include/caffe/layers/目录下, 2.修改在caff...

2018-06-25 10:03:36

阅读数:182

评论数:0

Python追加文件内容

测试中需要造几百个账号,写了个脚本可以自动生成账号,但想把生成的账号写入一个文件, 开始用的如下的write()方法,发下会先把原文件的内容清空再写入新的东西,文件里面每次都是最新生成的一个账号 mobile = Method.createPhone() file = r'D:\test....

2018-06-15 19:59:46

阅读数:66

评论数:0

相似图片检测:感知哈希算法之dHash的Python实现

某些情况下,我们需要检测图片之间的相似性,进行我们需要的处理:删除同一张图片、标记盗版等。 如何判断是同一张图片呢?最简单的方法是使用加密哈希(例如MD5, SHA-1)判断。但是局限性非常大。例如一个txt文档,其MD5值是根据这个txt的二进制数据计算的,如果是这个txt文档的完全复制版,那...

2018-06-15 09:40:51

阅读数:39

评论数:0

用于视觉识别的CS231n卷积神经网络(CS231n)神经网络学习笔记和有趣博客

http://cs231n.github.io/ 结合Web-Translate插件,很方便阅读,是一个很好的学习网站

2018-06-14 21:14:48

阅读数:17

评论数:0

Caffe下卷积神经网络中的一些特殊层(caffe不同类型层的介绍)

Batch Normalization 意义: 网络训练时,用来加速收敛速度 提醒: 已经将BN集成为一个layer了,使用时需要和scale层一起使用 训练的时候,将BN层的use_global_stats设置为false; 测试的时候将use_global_stats设置为true,...

2018-06-14 16:22:27

阅读数:34

评论数:0

Anaconda多环境多版本python配置指导

当你的服务器上有多个账户时,为了不破坏系统的环境,可以再个人账户上安装Anaconda,来进行自己环境的管理。 这里主要参考了这篇博客:Anaconda多环境多版本python配置指导 这里需要注意的是如果你本身需要的Python环境为2.7的时候,安装Anaconda时最好指定Python=...

2018-06-14 16:11:21

阅读数:30

评论数:0

OpenCV(c++)字符替换函数

字符串中的替换 //************************************ // Method: string_replace // FullName: string_replace // Access: public // Returns: void //...

2018-06-07 11:04:05

阅读数:44

评论数:0

ubuntu 14.04 Bob 安装

ubuntu 14.04 Bob 安装 主要是参考下面的博客,但是安装的时候 出现一些问题。 https://blog.csdn.net/qq_36196813/article/details/63686270 首先出现的问题,报错如下: dpkg: 处理软件包 pytho...

2018-06-04 09:51:53

阅读数:51

评论数:0

linux tar.gz zip 解压缩 压缩命令

http://apps.hi.baidu.com/share/detail/37384818 download ADT link http://dl.google.com/android/ADT-0.9.6.zip download SDK link http://dl.google.co...

2018-06-01 14:40:08

阅读数:17

评论数:0

深度学习笔记+图像处理+RCNN发展流程

深度学习笔记 深度学习(六十九)darknet 实现实验 Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffma 深度学习(六十八)darknet使用 深度学习(六十七)metal forg...

2018-05-30 17:25:09

阅读数:235

评论数:0

Cmake知识----编写CMakeLists.txt文件编译C/C++程序

CMake是一种跨平台编译工具,比make更为高级,使用起来要方便得多。CMake主要是编写CMakeLists.txt文件,然后用cmake命令将CMakeLists.txt文件转化为make所需要的makefile文件,最后用make命令编译源码生成可执行程序或共享库(so(shared ob...

2018-05-25 15:25:00

阅读数:27

评论数:0

利用3000fps把人脸的脸部区域抠出来(二)

上一篇已经把人脸的脸部区域框出来了,那么要把人脸抠出来,只需要把轮廓的特征点放在一个verctor中组成一个ROI区域,然后根据OpenCV多边形抠图原理,把人脸抠出来就可以了。注意一下,把特征点放入的时候需要顺序加进vertor中,不然抠出的区域会出现会有交叉。 下面来看看代码: voi...

2018-05-24 18:59:52

阅读数:104

评论数:0

利用3000fps把人脸面部抠出来(一)

思路:思路很简单,前面有一篇讲了如何利用3000fps检测人脸特征点,把特征点检测出来之后,就有了人脸的大概轮廓。如下图。 上图只是显示了部分特征点,从0-16个特征点可以知道大概的脸型。 但是还有上半部分没有特征点,无法确定头发部分。怎么办呢?通过查看文献,其中这篇论文《Face Ima...

2018-05-24 17:08:45

阅读数:126

评论数:0

MATLAB随机生成大小也是随机的矩形(地形图二)

有一个需求需要要生成地貌一样的随机地形图,首先我通过在固定大小的矩形面板上生成多个大小不一的矩形,然后赋予每个矩形随机的高度,然后再进行滤波得到想要的地形图。 上一篇已经生成了随机的大小的矩形图,那么只需要赋予每个矩形图一定的高度,然后进行滤波。先贴代码。 function im2 = rec...

2018-05-24 16:16:08

阅读数:75

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭