本地部署,AuraSR全新图像超分辨率模型

目录

前言:

Usage

docker安装

运行结果

结论:

Tip:

问题1:docker部署

问题2:API处理

问题3:网络问题

问题4:程序开发


前言:

一款名为AuraSR的全新图像超分辨率模型引起了人工智能界的广泛关注。该模型由Fal AI公司开发,基于Adobe最新发布的GigaGAN论文,采用生成对抗网络(GAN)技术,能够在极短时间内将图像分辨率大幅提升。

AuraSR模型具有以下几个显著特点:

  1. 参数量达6亿,处理能力强大。
  2. 采用GAN技术,相比传统扩散模型,处理速度更快。
  3. 能够实现4倍超分辨率处理,将512像素图像提升至1024像素。
  4. 处理速度惊人,仅需1/4秒即可完成上述分辨率提升。

Usage

$ pip install aura-sr
from aura_sr import AuraSR

aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")
import requests
from io import BytesIO
from PIL import Image

def load_image_from_url(url):
    response = requests.get(url)
    image_data = BytesIO(response.content)
    return Image.open(image_data)

image = load_image_from_url("https://mingukkang.github.io/GigaGAN/static/images/iguana_output.jpg").resize((256, 256))
upscaled_image = aura_sr.upscale_4x(image)

docker安装

docker run -it -p 7860:7860 --platform=linux/amd64 --gpus all registry.hf.space/gokaygokay-aurasr:latest python app.py

运行结果

结论:

看起来运行起来的效果非常不错。部署在本地可以方便的使用,即使在没有网络的情况下。

Tip:


问题1:docker部署


为什么要用docker来部署?

主要为了以后如果需要放在服务器做微服务的话,会非常方便,直接把docker镜像放进去,就迅速搭建起来了。

问题2:API处理


有时间把api处理一下,这样不论是软件或者小程序都可以非常方便的来调用

问题3:网络问题


有可能有人网络的问题,下载不了docker 镜像,找时间把docker 镜像上传一下,供读者下载

问题4:程序开发

下一步可以做一个桌面版和微信小程序版,先记录一下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值