pytorch,用lenet5识别cifar10数据集(训练+测试+单张图片识别)

目录

LeNet-5

LeNet-5 结构

CIFAR-10

pytorch实现

lenet模型

训练模型

1.导入数据

2.训练模型

3.测试模型

测试单张图片

代码

运行结果


LeNet-5

LeNet-5 是由 Yann LeCun 等人在 1998 年提出的一种经典卷积神经网络(CNN)模型,主要用于手写数字识别任务。它在 MNIST 数据集上表现出色,并且是深度学习历史上的一个重要里程碑。

LeNet-5 结构

LeNet-5 的结构包括以下几个层次:

  1. 输入层: 32x32 的灰度图像。
  2. 卷积层 C1: 包含 6 个 5x5 的滤波器,输出尺寸为 28x28x6。
  3. 池化层 S2: 平均池化层,输出尺寸为 14x14x6。
  4. 卷积层 C3: 包含 16 个 5x5 的滤波器,输出尺寸为 10x10x16。
  5. 池化层 S4: 平均池化层,输出尺寸为 5x5x16。
  6. 卷积层 C5: 包含 120 个 5x5 的滤波器,输出尺寸为 1x1x120。
  7. 全连接层 F6: 包含 84 个神经元。
  8. 输出层: 包含 10 个神经元,对应于 10 个类别。

CIFAR-10

CIFAR-10 是一个常用的图像分类数据集,包含 10 个类别的 60,000 张 32x32 彩色图像。每个类别有 6,000 张图像,其中 50,000 张用于训练,10,000 张用于测试。

1. 标注数据量训练集:50000张图像测试集:10000张图像

2. 标注类别数据集共有10个类别。具体分类见图1。

3. 可视化

pytorch实现

lenet模型

  • 平均池化(Average Pooling):对池化窗口内所有像素的值取平均,适合保留图像的背景信息。
  • 最大池化(Max Pooling):对池化窗口内的最大值进行选择,适合提取显著特征并具有降噪效果。

在实际应用中,最大池化更常用,因为它通常能更好地保留重要特征并提高模型的性能。

import torch.nn as nn
import torch.nn.functional as func


class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, kernel_size=5)
        self.conv2 = nn.Conv2d(6, 16, kernel_size=5)
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = func.relu(self.conv1(x))
        x = func.max_pool2d(x, 2)
        x = func.relu(self.conv2(x))
        x = func.max_pool2d(x, 2)
        x = x.view(x.size(0), -1)
        x = func.relu(self.fc1(x))
        x = func.relu(self.fc2(x))
        x = self.fc3(x)
        return x

训练模型

1.导入数据

导入训练数据和测试数据

    def load_data(self):
        #transforms.RandomHorizontalFlip() 是 pytorch 中用来进行随机水平翻转的函数。它将以一定概率(默认为0.5)对输入的图像进行水平翻转,并返回翻转后的图像。这可以用于数据增强,使模型能够更好地泛化。

        train_transform = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.ToTensor()])
        test_transform = transforms.Compose([transforms.ToTensor()])

        train_set = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
        self.train_loader = torch.utils.data.DataLoader(dataset=train_set, batch_size=self.train_batch_size, shuffle=True)
        
        # shuffle=True 表示在每次迭代时,数据集都会被重新打乱。这可以防止模型在训练过程中过度拟合训练数据,并提高模型的泛化能力。
        test_set = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=test_transform)
        self.test_loader = torch.utils.data.DataLoader(dataset=test_set, batch_size=self.test_batch_size, shuffle=False)

2.训练模型

    def train(self):
        print("train:")
        self.model.train()
        train_loss = 0
        train_correct = 0
        total = 0

        for batch_num, (data, target) in enumerate(self.train_loader):
            data, target = data.to(self.device), target.to(self.device)
            self.optimizer.zero_grad()
            output = self.model(data)
            loss = self.criterion(output, target)
            loss.backward()
            self.optimizer.step()
            train_loss += loss.item()
            prediction = torch.max(output, 1)  # second param "1" represents the dimension to be reduced
            total += target.size(0)

            # train_correct incremented by one if predicted right
            train_correct += np.sum(prediction[1].cpu().numpy() == target.cpu().numpy())

            progress_bar(batch_num, len(self.train_loader), 'Loss: %.4f | Acc: %.3f%% (%d/%d)'
                         % (train_loss / (batch_num + 1), 100. * train_correct / total, train_correct, total))

        return train_loss, train_correct / total

3.测试模型

    def test(self):
        print("test:")
        self.model.eval()
        test_loss = 0
        test_correct = 0
        total = 0

        with torch.no_grad():
            for batch_num, (data, target) in enumerate(self.test_loader):
                data, target = data.to(self.device), target.to(self.device)
                output = self.model(data)
                loss = self.criterion(output, target)
                test_loss += loss.item()
                prediction = torch.max(output, 1)
                total += target.size(0)
                test_correct += np.sum(prediction[1].cpu().numpy() == target.cpu().numpy())

                progress_bar(batch_num, len(self.test_loader), 'Loss: %.4f | Acc: %.3f%% (%d/%d)'
                             % (test_loss / (batch_num + 1), 100. * test_correct / total, test_correct, total))

        return test_loss, test_correct / total

测试单张图片

网上随便下载一个图片

然后使用图片编辑工具,把图片设置为32x32大小

通过导入模型,然后测试一下

代码

import torch
import cv2
import torch.nn.functional as F
#from model import Net  ##重要,虽然显示灰色(即在次代码中没用到),但若没有引入这个模型代码,加载模型时会找不到模型
from torch.autograd import Variable
from torchvision import datasets, transforms
import numpy as np
 
classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
if __name__ == '__main__':
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = torch.load('lenet.pth')  # 加载模型
    model = model.to(device)
    model.eval()  # 把模型转为test模式
 
    img = cv2.imread("bird1.png")  # 读取要预测的图片
    trans = transforms.Compose(
        [
            transforms.ToTensor()
        ])
 
    img = trans(img)
    img = img.to(device)
    img = img.unsqueeze(0)  # 图片扩展多一维,因为输入到保存的模型中是4维的[batch_size,通道,长,宽],而普通图片只有三维,[通道,长,宽]
    # 扩展后,为[1,1,28,28]
    output = model(img)
    prob = F.softmax(output,dim=1) #prob是10个分类的概率
    print(prob)
    value, predicted = torch.max(output.data, 1)
    print(predicted.item())
    print(value)
    pred_class = classes[predicted.item()]
    print(pred_class)

运行结果

tensor([[1.8428e-01, 1.3935e-06, 7.8295e-01, 8.5042e-04, 3.0219e-06, 1.6916e-04,
         5.8798e-06, 3.1647e-02, 1.7037e-08, 8.9128e-05]], device='cuda:0',
       grad_fn=<SoftmaxBackward0>)
2
tensor([4.0915], device='cuda:0')
bird

从结果看,效果还不错。记录一下

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值