我是Mr.看海,我在尝试用信号处理的知识积累和思考方式做量化交易,目的是实现财务自由~
书接上回。
这篇开始正式介绍我开发的量化交易系统,量化交易的第一步就是获取历史数据,用于后续的数据处理、训练以及回测。
在QMT系统中其实是可以下载历史数据的,但是导出数据只能选择日线,无法导出tick、1m和5m等等分时数据,所以无法依托这个模块为后续我想做的量化交易系统提供输入。况且考虑后续系统的完整性,数据下载模块就撸起袖子自己干了!
完整版QMT的数据导出模块
一、关于API接口
由于我采用的是MiniQMT的框架方案,MiniQMT中提供了XtQuant服务,该服务中包含行情模块和交易模块。
Xtdata 作为行情模块,本模块旨在提供精简直接的数据满足量化交易者的数据需求,主要提供行情数据(历史和实时的K线和分笔)、财务数据、合约基础信息、板块和行业分类信息等通用的行情数据。
Xttrader 作为交易模块,封装了策略交易所需要的 Python API 接口,可以和MiniQMT客户端交互进行报单、撤单、查询资产、查询委托、查询成交、查询持仓以及接收资金、委托、成交和持仓等变动的主推消息。
在数据下载模块中,我们要用的就是行情模块Xtdata。
历史数据下载可以使用download_history_data方法,然后通过get_local_data读取到本地。调用方式可参考下列代码:
# 下载数据到本地
xtdata.download_history_data(stock, period=period_type, start_time=start_date, end_time=end_date)
# 从本地读取数据
data = xtdata.get_local_data(field_list=["time"] + field_list, stock_list=[stock], period=period_type, start_time=start_date, end_time=end_date)
接口支持下载tick数据,也就是分笔数据,分笔数据支持的字段如下: