自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(86)
  • 资源 (7)
  • 收藏
  • 关注

原创 【深度学习量化交易3】为了轻松免费地下载股票历史数据,我开发完成了可视化的数据下载模块

这篇开始正式介绍我开发的量化交易系统,量化交易的第一步就是获取历史数据,用于后续的数据处理、训练以及回测。

2024-10-17 23:32:14 675

原创 【深度学习量化交易2】财务自由第一步,三个多月的尝试,找到了最合适我的量化交易路径

一晃三个多月时间过去了,十一前后股市突然爆火,行情也像过山车一样,笔者在其中靠直觉辗转腾挪,勉强落得个不赔不赚。此事也给我打了一针鸡血,加快了量化交易研究和系统开发进度。

2024-10-15 00:47:23 1102

原创 【Python】类EMD的“信号分解方法”横向对比详解,EMD,EEMD,CEEMD,CEEMDAN,ICEEMDAN,EWT,VMD优劣对比。附一行代码实现所有分解方法,7合1的python代码!

目前网上没有iceemdan的python版本代码,本篇中将该方法予以补全。另外vmd分解使用的vmdpy工具包在分解奇数数量的信号时,其分解结果的数据长度会缩短1,对于此bug,在本文的代码中也予以修复。

2024-07-31 21:04:52 1070

原创 类EMD的“信号分解方法”横向对比详解,EMD,EEMD,CEEMD,CEEMDAN,ICEEMDAN,EWT,VMD优劣对比。附一行代码实现所有分解方法,7合1的MATLAB代码!

在之前的一系列文章中,我介绍了包括EMD,EEMD,CEEMD,CEEMDAN,ICEEMDAN,EWT,VMD在内的一系列所谓“类EMD”的分解方法。同学们在使用过程中经常会需要对比这些算法的优劣,并在论文中加以呈现;也有一些同学想直接知道结论,究竟哪个方法最好呢?这篇文章就来回答这个问题,并且给出一系列的评价方法,方便大家使用,并且同样封装了极其易用的函数。

2024-06-29 17:57:31 2256 2

原创 【深度学习量化交易1】一个金融小白尝试量化交易的设想、畅享和遐想

今天开始,我将一步步记录后续做量化交易的实现过程,既是对纷繁的思路的归纳梳理,也是为推动这项一个人的赚钱大业增加一些鞭策激励。读者朋友们如果有好的想法欢迎一起讨论~

2024-06-16 23:02:05 1272

原创 【深度学习-第6篇】使用python快速实现CNN多变量回归预测(使用pytorch框架)

这一篇我们讲CNN的多变量回归预测。是的,同样是傻瓜式的快速实现。本篇是之前MATLAB快速实现CNN多变量回归预测的姊妹篇。

2024-05-30 23:02:10 5648 6

原创 【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,包络熵,散布熵,究竟实现了什么?(第六篇)——“散布熵”及其MATLAB实现

​Rostaghi 和 Azami于 2016 年提出了散布熵。该算法克服近似熵、样本熵与排列熵的部分缺陷,具有计算速度快、受突变信号影响较小等优点,在滚动轴承、齿轮箱等旋转机械特征提取及故障诊断中得到较好应用。

2024-04-24 23:02:59 1655

原创 【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,包络熵,散布熵,究竟实现了什么?(第五篇)——“包络熵”及其MATLAB实现

今天要讲的包络熵,是比较简单和直观的,不过很多论文里都有用到,尤其是在做寻优算法时,包络熵经常被用来作为适应度函数。

2024-04-24 22:59:18 1797

原创 【深度学习-第5篇】使用Python快速实现CNN分类(模式识别)任务,含一维、二维、三维数据演示案例(使用pytorch框架)

​CNN也可以扩展到非图像领域使用,比如对一组一维数据,也是同样可以实现分类的。本篇文章是之前CNN分类的MATLAB实现那篇文章的姊妹篇,通过这篇文章,大家将会快速掌握使用pytorch框架进行CNN分类的编程方法,另外对于主体代码流程,我也做了傻瓜化使用的封装,方便大家使用。​

2024-04-22 22:00:32 4849 1

原创 【深度学习-番外1】Win10系统搭建VSCode+Anaconda+Pytorch+CUDA深度学习环境和框架全过程

本文将介绍在Windows 10系统下搭建深度学习环境的完整过程,包括安装Anaconda、CUDA、NVIDIA显卡驱动以及Pytorch框架。后续本专栏的Python语言下的深度学习环境都以本篇搭建的为准。

2024-04-21 01:35:40 2014 3

原创 【优化算法】VMD分解算法的16种优化,对K和alpha参数寻优,附MATLAB代码

在实际的研究中,适应度函数往往要复杂得多。本篇我们就以VMD算法的优化为例,讲一讲这种较为复杂的算法的寻优该怎么做,此外我还提供了修改好的VMD寻优代码,供大家参考使用!

2024-04-02 00:22:35 4217 1

原创 【优化算法综述】一行代码实现16种优化算法,常用寻优算法合集及MATLAB快速实现,写好1个就等于写好了16个~

欢迎来到动物园!在已有的众多的优化算法里,生物的行为是研究者们最常模仿的对象,所以你就会经常看到狼啊、麻雀啊、鲸鱼啊,甚至还有小龙虾。当然这些算法的解决思路都很优秀,而对优化算法的应用和改进,也是写论文中极佳的创新点——能研究出新的优化算法固然最好;就算没有,单是将参数寻优加到你的主算法流程中,也可以算是可以说道说道的创新点之一了,在我们乏善可陈(并不)的论文中,也可以提一点亮色~然而此时同学们可能就纠结了,究竟哪一种优化算法更好呢?又该怎样实现“无痛”编程呢?

2024-03-17 21:15:02 4508

原创 【滤波专题-第9篇】类EMD分解算法联合小波阈值降噪及MATLAB代码实现(以ICEEMDAN-样本熵-小波阈值降噪方法为例)

今天这篇介绍的算法,由于其高度的灵活性、使用方法的丰富性以及不错的效果,堪称水论文神器。对于需要使用滤波算法的同学们,这篇文章不可错过~

2024-03-15 00:40:17 1890

原创 【滤波专题-第8篇】ICA降噪方法——类EMD联合ICA降噪及MATLAB代码实现(以VMD-ICA为例)

今天来介绍一种效果颇为不错的降噪方法。(针对高频白噪声)。在现实世界的许多情况下,噪声往往接近高斯分布,而有用的信号(如语音、图像特征等)往往表现出非高斯的特性。FastICA通过最大化输出信号的非高斯性来恢复这些有用的信号,从而有效地从噪声中分离出信号。下面将详细解释这种结合的算法流程、优势以及MATLAB代码实现。

2024-03-13 01:03:49 1741

原创 【盲源分离】快速理解FastICA算法(附MATLAB绘图程序)

今天讲一个在信号分析领域较为常用的一个方法,即盲源分离算法中的FastICA。我们先从一个经典的问题引入。

2024-02-27 23:55:02 6060 1

原创 【复合多尺度熵与特征提取】一文看懂“复合多尺度熵”——复合多尺度样本熵、模糊熵、排列熵、包络熵、功率谱熵、能量熵、奇异谱熵及其MATLAB实现

本篇要讲的是多尺度熵的一个改进特征提取方法——复合多尺度熵(Composite Multiscale Entropy, CMSE)。复合多尺度熵方法不仅继承了多尺度熵在揭示时间序列多尺度复杂性方面的优势,而且还通过改进的计算方式,提高了熵值的稳定性和准确性,尤其是在处理短时间序列或噪声较大的信号时。

2024-02-17 20:52:23 2967

原创 【多尺度熵与特征提取】一文看懂“多尺度熵”——多尺度样本熵、多尺度模糊熵、多尺度排列熵、多尺度包络熵、多尺度功率谱熵、多尺度能量熵、多尺度奇异谱熵及其MATLAB实现

在之前的系列的文件里,我对信息熵(功率谱熵、奇异谱熵、能量熵、近似熵、样本熵、排列熵、模糊熵)进行了较为系统的讲解(文章链接见文末)。对于一组一维数据来说,求它的某种信息熵(比如模糊熵)得到的就是单一的数值,它描述的是这段信号的复杂度,单一的数据点自然没办法画图。不过对于朴素的“想要有张图贴到论文中”的想法,今天要讲的“多尺度熵”就可以满足了。

2024-02-02 22:43:58 4863

原创 从傅里叶变换,到短时傅里叶变换,再到小波分析(CWT),看这一篇就够了(附MATLAB傻瓜式实现代码)

本专栏中讲了很多时频域分析的知识,不过似乎还没有讲过时频域分析是怎样引出的。所以本篇将回归本源,讲一讲从傅里叶变换→短时傅里叶变换→小波分析的过程。为了让大家更直观得理解算法原理和推导过程,这篇文章将主要使用图片案例。

2023-11-18 00:24:40 6551 1

原创 类EMD的“信号分解方法”及MATLAB实现(第九篇)——小波包变换(WPT)/小波包分解(WPD)

通过将小波包分解的原理与传统的小波分解方法相对比,我们可以明显看到其在精细度和适用性方面的优势。WPD提供的全面频率分析工具不仅增强了我们对信号的理解,而且在实际应用中扩大了小波理论的边界。随着分解级别的加深,WPD赋予了分析师在时间-频率域内进行更加细致探查的能力,这是在传统的小波分解中所无法实现的。我将这篇也归到“类EMD”分解方法的分类中了,主要是取其“分解信号以便分析”的相似目的,但是从底层方法和结果形式上,两者都是有较大区别的,故在此特地说明。

2023-11-08 00:26:47 2167

原创 类EMD的“信号分解方法”及MATLAB实现(第八篇)——离散小波变换DWT(小波分解)

在之前的系列文章里,我们介绍了,我们继续补完该系列。今天要讲到的是小波分解,通常也就是指离散小波变换(Discrete Wavelet Transform, DWT)。在网上有一些介绍该方法的文章,但是总感觉不够通俗或不够透彻,希望读完这篇能让你有所收获。

2023-10-29 12:05:47 2062

原创 【深度学习-第4篇】使用MATLAB快速实现CNN多变量回归预测

上一篇我们讲了使用CNN进行分类的MATLAB代码。这一篇我们讲CNN的多变量回归预测。是的,同样是傻瓜式的快速实现。

2023-10-20 23:34:59 2371

原创 【深度学习-第3篇】使用MATLAB快速实现CNN分类(模式识别)任务,含一维、二维、三维数据演示案例

在本文中,我们将介绍如何使用 MATLAB 中的 Convolutional Neural Network(CNN)进行分类任务。我们将使用 MATLAB 的 Deep Learning Toolbox 来创建、训练和评估 CNN。

2023-09-19 20:58:36 8033

原创 【深度学习-第2篇】CNN卷积神经网络30分钟入门!足够通俗易懂了吧(图解)

网络上有着很多关于CNN入门的教程,但是总还是觉得缺少足够简易、直观、全面的文章,能让人通读下来酣畅淋漓,将CNN概念尽收囊中。本篇文章就想尝试一下,真正地带小白同学们轻松入门。这篇文章包含很多图片,为了花这些图笔者颇费了些功夫,认真看下来,相信你一定能有所收获。

2023-06-16 21:53:47 1455

原创 【深度学习-第1篇】深度学习是什么、能干什么、要怎样学?

按照本专栏的内容,我会带着大家从零开始逐渐实现对深度学习的全面了解和掌握。

2023-06-04 10:06:30 1226

原创 【滤波专题-第7篇】“类EMD”算法分解后要怎样使用(3)——EMD降噪方法及MATLAB代码实现

使用EMD分解(以及其他“类EMD”分解方法,以下为了简便统称EMD)做信号降噪,是EMD的一个比较重要的应用方向。EMD可以将复杂的信号分解为一系列的固有模态函数(IMFs),每一个IMF都包含了信号的一部分频率信息。在信号降噪的过程中,如何选择和筛选IMFs是关键步骤之一。在本文中,我将介绍EMD降噪的基本步骤以及几种常见的IMFs筛选策略。

2023-05-17 22:15:55 6088 1

原创 【数据降维-第4篇】多维尺度变换(MDS)快速理解,及MATLAB实现

这篇是继和三种降维方法后的第4篇。在大数据时代,我们不断面临高维度数据的挑战。为了更好地理解这些数据,MDS算法应运而生。本文将详细介绍MDS算法的原理、步骤及其应用场景,帮助你深入了解这个强大的降维工具。

2023-04-05 12:39:03 3582 2

原创 【数据降维-第3篇】t分布-随机邻近嵌入(t-SNE)快速理解,及MATLAB实现

这篇是继和两种降维方法后的第三篇。当我们处理高维数据时,很难直观地理解和发现数据中的结构和关联。t-SNE是一种强大的降维技术,能够揭示高维数据背后的秘密。本文将主要介绍t-SNE的原理和应用。

2023-03-27 23:46:29 3619 1

原创 【数据降维-第2篇】核主成分分析(KPCA)快速理解,及MATLAB实现

本文介绍了KPCA(Kernel Principal Component Analysis)的基本概念和应用。与PCA相比,KPCA使用核函数对数据进行映射,从而处理非线性问题,并能够更好地构造复杂的非线性分类器。本文通过两个例子,介绍了KPCA在图像分类和异常检测中的应用。本文还解释了KPCA和PCA在参数设置上的不同之处,帮助读者更好地理解和应用KPCA算法。

2023-03-13 00:05:43 13494 5

原创 【数据降维-第1篇】主成分分析(PCA)快速理解,及MATLAB实现

据降维是机器学习领域经常使用到的数据处理方法,所以在本专栏在正式开始深度学习专题之前,先介绍几种常用的降维方法(PCA、KPCA、t-SNE、MDS等)和MATLAB实现。

2023-03-03 00:17:13 4282

原创 如何优雅地导出MATLAB数据——一行代码实现表格数据写入文件

将MATLAB计算出的数据进行导出和存储,也是在MATLAB编程中经常用到的功能之一,在MATLAB中有几个常用的方法,比如writetable、xlswrite、writematrix、writecell等,综合来看writetable功能比较全面,所以这里准备采用writetable方法进行实现。而且在很多数据处理过程中,我们得到的是一个二维矩阵,如果再像上述代码中那样把每一列都拆分出来单独赋值,是很累赘的一种做法。

2023-02-05 20:30:34 2088

原创 【滤波专题-第6篇】小波阈值去噪方法看这一篇就明白了~(附MATLAB实现)

小波阈值去噪的算法是近些年比较流行的一种滤波方法,由于其阈值函数有着众多的改进方式和改进空间,改进阈值函数也往往可以作为创新点和亮点写到论文中,所以对于正在搞相关研究的同学们写论文是比较友好的(轻松水论文方式+1)。本篇将用尽量易懂的方式对小波阈值的原理进行讲解,帮大家梳理几个效果还可以的改进阈值函数,并提供一种非常便捷的MATLAB实现方法,供同学们使用。

2022-12-07 18:48:01 20492 8

原创 【Python】这篇文章能让你明白经验模态分解(EMD)——EMD在python中的实现方法

暂时打断一下滤波专题,插播一条EMD在python中实现方法的文章。本篇是的姊妹篇,也就是要在python中实现EMD分解并画图。

2022-11-09 22:53:56 12354 5

原创 【滤波专题-第5篇】FIR、IIR滤波器设计及MATLAB实现

之前的两篇文章分别介绍了和的基础理论,这一篇我们将介绍其在MATLAB中的具体实现方法。

2022-10-28 00:24:19 6502 2

原创 【滤波专题-第3篇】IIR无限冲激响应和FIR有限冲激响应数字滤波器有什么区别?

那么问题来了,IIR和FIR数字滤波器有什么区别?

2022-10-13 11:43:59 1449

原创 【滤波专题-第4篇】滤波器滤波效果的评价指标(信噪比SNR、均方误差MSE、波形相似参数NCC)

之前两篇文章讲了滤波算法的两大最基本理论和。本篇将讲一下滤波效果的评价指标与用法。评价指标主要用于对滤波效果的量化评价,在论文里经常会用到。

2022-10-13 11:42:30 8657 7

原创 【滤波专题-第2篇】数字滤波器15分钟入门——IIR无限冲激响应滤波讲解

在上一篇文章中我们讲了FIR有限冲激响应的概念,今天就轮到无限冲激响应IIR了。

2022-10-09 23:56:24 1784

原创 【滤波专题-第1篇】数字滤波器快速入门——FIR有限冲激响应滤波讲解

今天开始,本专栏将开通一个关于滤波的新专题。

2022-09-16 23:35:55 13833 15

原创 这篇文章能让你明白卷积

形象图解卷积的含义

2022-06-10 00:06:06 2558 3

原创 【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,究竟实现了什么?(第四篇)——“排列熵”及其MATLAB实现

今天讲排列熵,之前用了三篇文章分别讲述了近似熵、样本熵和模糊熵:Mr.看海:【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,究竟实现了什么?(第一篇)——“近似熵”及其MATLAB实现

2022-05-28 14:17:21 4520 1

原创 【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,究竟实现了什么?(第三篇)——“模糊熵”及其MATLAB实现

之前两篇文章分别介绍了近似熵和样本熵:Mr.看海:【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,究竟实现了什么?(第一篇)——“近似熵”及其MATLAB实现Mr.看海:【熵与特征提取】从近似熵,到样本熵,到模糊熵,再到排列熵,究竟实现了什么?(第二篇)——“样本熵”及其MATLAB实现近似熵和样本熵都是衡量时间序列的复杂性的方法,但是二者的定义中两个向量的相似性都是基于单位阶跃函数而定义的,单位阶跃函数具备二态分类器的性质,如果输入样本满足一定特性,则被判定属于一给定类,否则属于另一

2022-05-27 14:49:11 4280

小波阈值MATLAB代码,可以实现软阈值、硬阈值以及5种改进阈值方法,封装好的函数快速实现

理论部分见这里:https://blog.csdn.net/fengzhuqiaoqiu/article/details/128225117 笔者改造了wden、thselect和wthresh三个函数文件,并进一步封装成filterWaveletTh函数,延续本专栏中以往代码的风格,实现“一行代码”完成小波阈值去噪的效果。当然啦,这里所说的“一行代码”还需要配合一些参数的设置。

2022-12-07

功率谱熵、奇异谱熵、能量熵、近似熵、样本熵、排列熵、模糊熵的特征提取MATLAB程序

该资源为试用版代码~ 一行代码快速实现特征提取! 理论讲解:https://blog.csdn.net/fengzhuqiaoqiu/article/details/124979190?spm=1001.2014.3001.5501 function fea = genFeatureEn(data,featureNamesCell,options) % 特征提取函数 % 输入: % data:待特征提取的时域信号,可以是二维数据,行列方向不可出错 % options:其他设置,使用结构体的方式导入。 % featureNamesCell:拟进行特征提取的特征名称,该变量为cell类型,其中包含的特征名称为字符串,特征名称需要在下边列表中: % 目前支持的特征(2022.7.10,共8种): % psdE:功率谱熵 % svdpE:奇异谱熵 % eE:能量熵 % ApEn:近似熵 % SampleEn:样本熵 % FuzzyEn:模糊熵 % PerEn:排列熵

2022-12-05

特征提取(时域有量纲特征、时域无量纲特征、频域指标和谱峭度相关参数)的MATLAB程序

目前支持进行提取的特征包括: 1.max :最大值 2.min :最小值 3. mean :平均值 4.peak :峰峰值 5.arv :整流平均值 6.var :方差 7.std :标准差 8.kurtosis :峭度 9.skewness :偏度 10.rms :均方根 11.waveformF :波形因子 12.peakF :峰值因子 13.impulseF :脉冲因子 14.clearanceF:裕度因子 15.FC:重心频率 16.MSF:均方频率 17.RMSF:均方根频率 18.VF:频率方差 19.RVF:频率标准差 20.SKMean:谱峭度的均值 21.SKStd:谱峭度的标准差 22.SKSkewness:谱峭度的偏度 23.SKKurtosis:谱峭度的峭度 function fea = genFeatureTF(data,fs,featureNamesCell) % 时域、频域相关算法的信号特征提取函数

2022-07-11

使用python从零开始写一个两层神经网络

神经网络15分钟入门!使用python从零开始写一个两层神经网络。代码讲解见知乎专栏“与信号处理相关的那些东东”,或者微信公众号“括号的城堡”

2019-09-01

EMD的MATLAB相关库

MATLAB上需要用到的EMD,pack_emd,和TFTB三个库,以及HHT变换官方提供的介绍ppt

2018-07-29

MATLAB读取TDMS文件函数

function BackData = ReadTDMSData(ChanNum,StartNum,NumToGet,filefolder,filepath) %参数依次为:通道号/开始数据号/结束数据号/文件路径/文件名 对NI官方给出的函数做了修改,直接返回数据值。需要放在ni官方文档中运行,需要改nilibddc.dll和nilibddc_m.h路径

2018-07-02

stm32f4xx挂载SD卡程序,可以正常读写

stm32f4xx挂载SD卡程序,可以正常读写

2017-07-30

单片机机选型手册集合(8bit)STM8、PIC、C8051F、STC

单片机机选型手册集合(8bit)STM8、PIC、C8051F、STC 一些比较初级的芯片汇总。

2015-12-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除