【深度学习量化交易4】 量化交易历史数据清洗——为后续分析扫清障碍

我是Mr.看海,我在尝试用信号处理的知识积累和思考方式做量化交易,目的是实现财务自由~

上次说到,为了便于下载股票历史数据,我开发完成了可视化的数据下载模块(下图)。

现在我们继续量化交易系统开发旅程,近期完成的部分是——数据清洗。

一、为什么要做数据清洗

在量化交易领域,历史数据的质量对交易策略的可靠性起着决定性作用。

"回测成功、实盘失败"的现象,往往可以追溯到历史数据质量的问题。

真实的市场环境充满了各种复杂情况。停牌、复牌、除权除息、市场熔断等特殊事件都会在历史数据中留下特殊痕迹。如果不对这些特殊情况进行恰当的清洗和处理,就可能误导策略的开发方向。

对于A股市场来说,这种情况尤为明显。

另外数据源的数据本身可能就存在质量不高的问题。

二、数据清洗策略

1. 缺失值处理

在量化交易中,数据缺失是一个普遍存在的问题,可能源于市场暂停交易、数据采集故障或者通信中断等原因。

缺失值处理的关键在于理解数据的业务特性,采用差异化的填充策略。

目前我采取的策略是这样的&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.看海

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值