#include<stdio.h>
#include<iostream>
using namespace std;
enum thread
{
LINK,
THREAD,
};
template<class T>
struct BinaryTreeThdNode
{
BinaryTreeThdNode()
:_pLeft(NULL)
,_pRight(NULL)
,_pParent(NULL)
,_leftThread(LINK)
,_rightThread(LINK)
{}
T _data;
BinaryTreeThdNode* _pLeft;//左孩子
BinaryTreeThdNode* _pRight;//右孩子
BinaryTreeThdNode* _pParent;//双亲节点
enum thread _leftThread;//左索引
enum thread _rightThread;//右索引
};
template<class T>
class BinaryTreeThd
{
public:
typedef BinaryTreeThdNode<T> Node;
BinaryTreeThd()//线索二叉树的构造
:_pRoot(NULL)
{}
BinaryTreeThd(const T array[],size_t size,T invalid)//线索二叉树的构造
{
size_t index=0;
_pRoot = _CreateTree(_pRoot,array,size,index,invalid);//二叉树的创建
}
void PreThreading()//前序线索化
{
Node* prev = NULL;
_PreThreading(_pRoot,prev);
}
void InThreading()//中序线索化
{
Node* prev = NULL;
_InThreading(_pRoot,prev);
}
void PostThreading()//后序线索化
{
Node* prev = NULL;
_PostThreading(_pRoot,prev);
}
void PreOrder()
{
// 找最左边的节点并访问路径上的节点---访问该最左节点---判断右子树是否为NULL,若为NULL,访问连续后继节点
//若不为NULL,则pCur=pCur->_pRight将右子树重新作为一棵树进行访问
if(_pRoot==NULL)
return;
Node* pCur = _pRoot;
while(pCur)
{
while(pCur->_leftThread == LINK)
{
cout<<pCur->_data<<" ";
pCur = pCur->_pLeft;
}
cout<<pCur->_data<<" ";
//while(pCur->_rightThread == THREAD)// 判断该节点的右子树不存在,访问后继节点
//{
// pCur = pCur->_pRight;
// cout<<pCur->_data<<" ";
//}
//if(pCur->_leftThread == LINK)//再访问完后继结点后,可能有两种情况,存在左子树,则先访问左子树,当作新树来处理
//{
// pCur = pCur->_pLeft;
//}
//if(pCur->_rightThread == LINK)//再访问完后继节点,可能没有左子树,只有右子树,或则最左节点右子树存在,则当作新树处理
//{
// pCur = pCur->_pRight;
//}
//代码优化---将上面注释起来的代码用下面一句代码替换
pCur = pCur->_pRight;//全部当作新的树来处理
}
}
void InOrder()//中序线索化二叉树的中序遍历
{
// 找到最左端的节点,不访问路径,找到之后访问最左端的节点---再判断其有无右子树,若有,作为新树去处理,若没有,连续访问其后继节点
if(_pRoot==NULL)
return;
Node* pCur = _pRoot;
while(pCur)
{
while(pCur->_leftThread == LINK)
{
pCur = pCur->_pLeft;
}
cout<<pCur->_data<<" ";
while(pCur->_rightThread == THREAD)
{
pCur = pCur->_pRight;
cout<<pCur->_data<<" ";
}
pCur = pCur->_pRight;
}
}
void PostOrder()//后序线索化二叉树的后序遍历
{
//找到最左节点,不访问,首先判断该节点的右子树是否存在,若不存在,访问该节点并到其后继节点,若存在,则访问右子树
//单纯的这样写,会导致死循环问题,在3的地方,原因是6已经访问过了,但pCur=pCur->_pRight还是指向6,接着访问6和3,死循环---解决办法prev标记访问过的
//仅仅是标记过了还是有问题,1没有办法访问到---解决办法,设立双亲节点
//特殊的索引树--左单枝问题,根节点没有访问(最后一个节点的右索引是LINK)---解决办法,if判断
//左单支问题
if(_pRoot==NULL)
return;
Node* pCur = _pRoot;
Node* prev = NULL;//标记访问过的节点
while(pCur)
{
while(pCur->_leftThread == LINK && pCur->_pRight != prev)
pCur = pCur->_pLeft;
while(pCur->_rightThread == THREAD)
{
cout<<pCur->_data<<" ";
prev = pCur;
pCur = pCur->_pRight;
}
if(pCur==_pRoot && pCur->_pRight==NULL)
{
cout<<pCur->_data<<" ";
return ;
}
while(pCur && pCur->_pRight==prev)
{
cout<<pCur->_data<<" ";
prev = pCur;
pCur = pCur->_pParent;
}
if(pCur && pCur->_pRight != prev)
pCur = pCur->_pRight;
}
}
private:
//底层实现
Node* _CreateTree(Node* pRoot,const T array[],size_t size,size_t& index,T& invalid)//二叉树的创建
{
if(index<size && array[index]!=invalid)
{
pRoot = new Node;
pRoot->_data = array[index];
pRoot->_pLeft = _CreateTree(pRoot->_pLeft,array,size,++index,invalid);
if(pRoot->_pLeft)
pRoot->_pLeft->_pParent = pRoot;
pRoot->_pRight = _CreateTree(pRoot->_pRight,array,size,++index,invalid);
if(pRoot->_pRight)
pRoot->_pRight->_pParent = pRoot;
}
return pRoot;
}
void _PreThreading(Node* pRoot,Node*& prev)//前序线索化---采用先线索化根节点,判断根节点左右子树是否存在,再利用递归线索化左子树和右子树的的节点
{
if(pRoot)
{
if(pRoot->_pLeft == NULL)// 线索化当前指针的左指针域
{
pRoot->_pLeft = prev;
pRoot->_leftThread = THREAD;
}
if(prev!=NULL && prev->_pRight==NULL)//线索化前一个节点的右指针域
{
prev->_pRight = pRoot;
prev->_rightThread = THREAD;
}
prev=pRoot;
if(pRoot->_leftThread != THREAD)//防止索引后陷入死循环
_PreThreading(pRoot->_pLeft,prev);
if(pRoot->_rightThread != THREAD)
_PreThreading(pRoot->_pRight,prev);
}
}
void _InThreading(Node* pRoot,Node*& prev)//中序线索化
{
if(pRoot)
{
_InThreading(pRoot->_pLeft,prev);//找到最左边的节点
if(pRoot->_pLeft==NULL)//线索化该节点的左指针域
{
pRoot->_pLeft = prev;
pRoot->_leftThread = THREAD;
}
if(prev && prev->_pRight==NULL)//线索化前一个节点的右指针域
{
prev->_pRight = pRoot;
prev->_rightThread = THREAD;
}
prev = pRoot;//该节点的左指针域线索完毕,标记该节点,
if(pRoot->_rightThread != THREAD)
_InThreading(pRoot->_pRight,prev);//线索化右子树的节点
}
}
void _PostThreading(Node* pRoot,Node*& prev)//测试二叉树的后续索引
{
if(pRoot)
{
_PostThreading(pRoot->_pLeft,prev);
_PostThreading(pRoot->_pRight,prev);
if(pRoot->_pLeft == NULL)
{
pRoot->_pLeft = prev;
pRoot->_leftThread = THREAD;
}
if(prev && prev->_pRight==NULL)
{
prev->_pRight = pRoot;
prev->_rightThread = THREAD;
}
prev = pRoot;
}
}
private:
Node* _pRoot;
};
测试代码
void funtest()
{
char str[] = {"124###35##6"};
char invalid = '#';
BinaryTreeThd<char> t;
BinaryTreeThd<char> t1(str,strlen(str),invalid);//测试线索二叉树的创建
//t1.PreThreading();//测试线索二叉树的先序索引
//t1.InThreading();//测试线索二叉树的中序索引
//t1.PostThreading();//测试线索二叉树的后序线索
}
void funtest1()//测试前序索引二叉树的前序遍历
{
char str[] = {"124###35##6"};
char invalid = '#';
BinaryTreeThd<char> t;
BinaryTreeThd<char> t1(str,strlen(str),invalid);
t1.PreThreading();
t1.PreOrder();
}
void funtest2()//测试中序索引二叉树的中序遍历
{
char str[] = {"124###35##6"};
char invalid = '#';
BinaryTreeThd<char> t;
BinaryTreeThd<char> t1(str,strlen(str),invalid);//测试线索二叉树的创建
t1.InThreading();
t1.InOrder();
}
void funtest3()//测试后序索引二叉树的后序遍历
{
//char str[] = {"124###35##6"};
char str[] = {"12#3##45#6#7##8"};
char invalid = '#';
BinaryTreeThd<char> t;
BinaryTreeThd<char> t1(str,strlen(str),invalid);//测试线索二叉树的创建
t1.PostThreading();
t1.PostOrder();
}
int main()
{
//funtest();
//funtest1();
//funtest2();
funtest3();
getchar();
return 0;
}