cf #572 div2 solution

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/Feynman1999/article/details/95010836

cf #572 div2 my solution

A

水题

#include<bits/stdc++.h>
using namespace std;

const int maxn = 2e5+10;
const int mod = 1e9+7;

int solve(string s)
{
    int num=0;
    for(int i=0;i<s.length();++i){
        if(s[i]=='1') num++;
    }
    return num;
}

int main()
{
    int n;
    cin>>n;
    string s;
    cin>>s;
    if(solve(s) != n - solve(s)){
        cout<<1<<endl;
        cout<<s<<endl;
    }
    else{
        cout<<2<<endl;
        cout<<s[0]<<" "<<s.substr(1)<<endl;
    }
    return 0;
}

B

排序,构造一下即可

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5+10;

int a[maxn];

int main()
{
    int n;
    cin>>n;
    for(int i=0;i<n;++i) cin>>a[i];
    sort(a,a+n);
    if(a[n-1]>=a[n-2]+a[n-3]){
        cout<<"NO"<<endl;
    }
    else{
        cout<<"YES"<<endl;
        cout<<a[n-3]<<" "<<a[n-1]<<" "<<a[n-2];
        for(int i=n-4;i>=0;--i) cout<<" "<<a[i];
        cout<<endl;
    }
    return 0;
}

上面的方法要进行排序,思考下面问题

在这里插入图片描述

C

注意到所有区间最后会化为一个数,过程中每有大于等于10的数,计数+1

所以可以直接将区间求和,下取整除10即可。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5+10;
const int duan = 32*(1<<1)-(1<<5);
int n;
int a[maxn];
int pre[maxn];

void init()
{
    pre[1] = a[1];
    for(int i=2;i<=n;++i) pre[i] = pre[i-1] + a[i];
}

int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    for(int i=1;i<=n;++i){
        cin>>a[i];
    }
    init();
    int q;
    cin>>q;
    while(q--)
    {
        int l,r;
        cin>>l>>r;
        cout<<(pre[r] - pre[l-1] )/10<<endl;
        //cout<<l<<" "<<r<<endl;
    }
    return 0;
}

D1

直观感觉,有度数为2的点,就不能任意构造,因为该点相连的两个边的权值一定相同。

要证明的是,为什么只要没有度数为2的点,就能构造出任意权值组合。见官方题解

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e5+10;

int n;
int du[maxn];

int main()
{
    ios::sync_with_stdio(false);
    cin>>n;
    int nn=n;
    int a,b;
    n--;
    while(n--)
    {
        cin>>a>>b;
        du[a]++;
        du[b]++;
    }
    bool flag=0;
    for(int i=1;i<=nn;++i){
        if(du[i]==2){
            cout<<"NO"<<endl;
            return 0;
        }
    }
    cout<<"YES"<<endl;
    return 0;
}

D2

给你一颗无根树,边权都不相同(且均为偶数),问如何通过每次选两个叶子节点并对路径+数,来构造所有边权.

注意D1中+的数可以是任意实数,而D2是整数.

首先,我们证明D1中为什么可以任意构造(只要度不为2),

一个性质:对于树中的任意一个点vv到一个叶子节点uu的路径,我可以只改变他们的权值(使之都+x),而其他边上的权值都不变.具体来说,有两种情况.

  1. v是另外一个叶子节点,显然满足

  2. v不是叶子节点,则其度数一定>2,(2不可能,因为直接令相关的两条边权值不同,就构造不了)

    由于其度数>2,则至少对应3颗子树. 我们分别找三颗子树中的三个叶子,记为l1,l2,ul_1, l_2, u.

    则对u&gt;l1u-&gt;l_1 加上x/2x/2 , 对u&gt;l2u-&gt;l_2加上x/2x/2, l1&gt;l2l_1-&gt; l_2减去x/2x/2 ,

    最后相当于对u&gt;vu-&gt;v 加上了xx . #

有了上面这个性质,继续说明如何构造任意情况.

在这里插入图片描述

solve(v):

if vv doesn’t have sons, then return.

otherwise, for each son uu we wiil find a leaf in subtree of uu — let’s name it ww. Than, add auva_{uv} on the path
vwvw and recalculate needed numbers on the edge in this path(it means for each edge ee on the path make this ae=auva_e -= a_{uv}),
after it, call solve(uu).

非要这样递归维护下面的边权吗? 其实一条边,可以直接用两次上述性质做个差分(注意到,能用性质的前提是权值为偶数)即可凑成.(差一条边的两条路径)

所以先预处理出每个点的叶子节点即可.时间复杂度O(n)O(n).

#include<bits/stdc++.h>
using namespace std;

const int maxn = 1e3+10;

int a[maxn],root;// fa[root] = 0
pair<int,int> b[maxn];//two leaf for every node
vector<pair<int,int>> G[maxn];

void dfs(int u, int fa){
    if(G[u].size()==1 && fa){// leaf  返回自己的编号
        b[u].first = u;//自己指向自己
        b[u].second = -1;//标记
        return ;
    }
    for(int i=0;i<G[u].size();++i){
        int v = G[u][i].first;
        if(v == fa) continue;
        dfs(v, u);
        if(!b[u].first) b[u].first = b[v].first;
        else if(!b[u].second) b[u].second = b[v].first;
    }
}

void dfs2(int u, int fa){
    if(G[u].size()==1) return ;
    for(int i=0;i<G[u].size();++i){
        if(G[u][i].first == fa) continue;
        int v = G[u][i].first;
        int val = G[u][i].second;
        //u->v val
        int l1 = b[u].first;
        int l2 = b[u].second;
        assert(l1!=l2);
        if(b[v].first == l1 || b[v].first == l2){
            //将l1 或 l2换掉
            if(u == root){//如果是根至少有三个值 一定能找到
                for(int j=0;j<G[u].size();++j){
                    if(b[G[u][j].first].first!= l1 && b[G[u][j].first].first!=l2){
                        if(b[v].first == l1) l1 = b[G[u][j].first].first;
                        if(b[v].first == l2) l2 = b[G[u][j].first].first;
                        break;
                    }
                }
            }
            else{//u不是根 则fa一定有另一个兄弟 取他的叶子
                for(int j=0;j<G[fa].size();++j){
                    if(G[fa][j].first ==u ) continue;
                    if(b[G[fa][j].first].first != l1 && b[G[fa][j].first].first != l2){
                        if(b[v].first == l1) l1 = b[G[fa][j].first].first;
                        if(b[v].first == l2) l2 = b[G[fa][j].first].first;
                        break;
                    }
                    if(b[G[fa][j].first].second != l1 && b[G[fa][j].first].second != l2){
                        if(b[v].first == l1) l1 = b[G[fa][j].first].second;
                        if(b[v].first == l2) l2 = b[G[fa][j].first].second;
                        break;
                    }
                }
            }
        }
        cout<<b[v].first<<" "<<l1<<" "<<val/2<<endl;
        cout<<b[v].first<<" "<<l2<<" "<<val/2<<endl;
        cout<<l1<<" "<<l2<<" "<<-val/2<<endl;
        //v 不是叶子
        if(G[v].size()!=1){
            //取 l1 b[v].first  和 b[v].second
            cout<<b[v].first<<" "<<l1<<" "<<-val/2<<endl;
            cout<<b[v].first<<" "<<b[v].second<<" "<<-val/2<<endl;
            cout<<l1<<" "<<b[v].second<<" "<<val/2<<endl;
        }
        dfs2(v,u);
    }
}

int main()
{
    //freopen("in.txt","r",stdin);
    ios::sync_with_stdio(false);
    int n,leanum=0;
    cin>>n;
    for(int i=0;i<n-1;++i){
        int u,v,val;
        cin>>u>>v>>val;
        G[u].push_back(make_pair(v,val));
        G[v].push_back(make_pair(u,val));
    }
    for(int i=1;i<=n;++i) if(G[i].size()==2) {
        cout<<"NO"<<endl;
        return 0;
    }
    if(n==2){
        cout<<"YES"<<endl;
        cout<<"1"<<endl;
        cout<<"1 2 "<<G[1][0].second<<endl;
        return 0;
    }
    //找一个du>1的node作为根
    for(int i=1;i<=n;++i) if(G[i].size()>2){root = i ;break;}
    dfs(root, 0);
    //for(int i=1;i<=n;++i) cout<<b[i].first<<" "<<b[i].second<<endl;
    for(int i=1;i<=n;++i) if(G[i].size()==1) leanum++;
    cout<<"YES"<<endl;
    cout<<6*(n-1) - 3*leanum<<endl;
    dfs2(root, 0);
    return 0;
}

这题写的我很难受,估计写复杂了. 我是先记录下每个点可能的两个叶子 (属于不同的子树)

然后各种判 先这样把 不改了…

E

find how many pairs satisfy below :
(ai+aj)(ai2+aj2)k&VeryThinSpace;mod&VeryThinSpace;p (a_i + a_j)(a_i^2 + a_j^2) \equiv k \bmod p

比赛的时候不会。看题解发现是个水题 /(ㄒoㄒ)/~~ 数学直觉不好

问题的难点在于转化,于是往原根方向想,可是没有思路。

实际上,只要两边同乘以aiaja_i - a_j就可以继续操作了。

ai4aj4k(aiaj)a_i^4 - a_j^4 \equiv k*(a_i - a_j)

ai4kaiaj4kajmod pa_i^4 - k*a_i \equiv a_j^4 - k*a_j \quad mod \ p

发现式子两边都只和一个数有关了 ,于是对之前的aa数组做对应的操作后,看有多少数对在mod pmod \ p的意义下是相同的即可。 用map即可

#include<bits/stdc++.h>
using namespace std;

const int maxn = 3e5+10;

int n,k,p;

int a[maxn];
unordered_map<int, int> mp;
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>p>>k;
    for(int i=0;i<n;++i){
        long long t;
        cin>>t;
        a[i] = t*t%p*t%p*t%p;
        a[i] = ((a[i] - k*t)%p + p)%p;
    }
    long long ans=0;
    for(int i=0;i<n;++i){
        int t = mp[a[i]];
        ans+=t;
        mp[a[i]] = t+1;
    }
    cout<<ans<<endl;
    return 0;
}

F

题目意思是,给你一个数组a[],那么他又很多子序列对吧.

我们定义一个子序列的价值是, minaiaj, ijmin|a_i -a_j|, \ i \neq j

求数组中所有长度为kk的子序列的价值和

数组长度1e3 ,值域1e5

思路

考虑怎么转化这个问题, 发现这个价值是变得,不太好dp

我们定义pip_i 为数组中,价值$\geq i $的子序列数目(即至少为i),

那么,可以说p1+p2+p3+...+pmax(a)p_1 + p_2 + p_3 +...+p_{max(a)} 即为所求. (没有P0P_0,是因为其)

为什么呢?有一种前缀和的思想在里面.

比如数组中有一些子序列的价值为3,那么他们最后对答案的贡献是 数量*3

看上面的式子,p1,p2,p3p_1 , p_2, p_3 中肯定包含有这些价值为3的序列. 也是3个 (对其他价值的序列同理)

那现在还有两个问题:

  1. 如何求pip_i

    dp[i][j]dp[i][j] 表示以第ii个数结尾,长度为jj 且满足价值至少为limitlimit 的序列数量.

    转移: 从dp[j1,j,...i1][j1]dp[j-1,j,...i-1][j-1] 转移过来 第一感觉时间复杂度O(n2k)O(n^2 k )

    考虑对原数组排序,不影响答案.(原先要任意挑出一对 , 排序前 排序后看成双射即可)

    如果数组是有序的,对于dp[..i1,i,i+1..][j]dp[..i-1,i,i+1..][j] 他们的转移有公共部分.

    具体来说,是单调的 所以对同一列的dpdp值,可以维护一个now指针,表示最靠右的数 且满足a[now]+limit&lt;=a[i]a[now]+limit&lt;=a[i]

    当i+1了,再尽量让now变大 , 时间复杂度为O(nk)O(nk)

  2. 时间复杂度

    再加上一开始的Limit的枚举,复杂度为O(max(a)nk)O(max(a)*n*k)

    考虑真的要dpdp max(a)max(a) 次吗?

    假设当前limit=xlimit = x, 则从a[1]a[1]a[k]a[k] 至少增加了(k1)x(k-1)*x 而对于数组aa ,提供的最大增量为a[n]a[1]a[n]-a[1] (排序后). 因此只要对(k1)xa[n]a[1](k-1) *x \leq a[n] - a[1]的那些xx ,求pxp_x 而更大的xx ,显然px=0p_x = 0 .

    时间复杂度为O(max(a)(k1)nk)=O(max(a)n)O({max(a) \over (k-1)} * nk) = O(max(a) * n) 可以跑完.

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
int k,n;
const int maxn = 1e3+10;
const int mod = 998244353;
int a[maxn];
int dp[maxn][maxn];//dp[i][len] 以第i个数结尾 长度为len的序列 (且满足价值最小比某个下界大于等于)的数量

int solve(int limit)
{
    for(int j=2;j<=k;++j){//后面每一列
        int now_v = 0, now_i = j-2;
        for(int i=j;i<=n;++i){
            while( a[now_i+1]+limit<=a[i]  && now_i+1 < i){//先维护now_i 看最右能到哪
                now_i++;
                now_v=now_v + dp[now_i][j-1];
                if(now_v > mod) now_v-=mod;
            }
            dp[i][j]=now_v;
        }
    }
    int ans = 0;
    for(int i=k;i<=n;++i) ans = (ans + dp[i][k] >= mod) ? ans+dp[i][k] - mod : ans + dp[i][k];
    return ans;
}

int main()
{
    //freopen("in.txt","r",stdin);
    ios::sync_with_stdio(false);
    cin>>n>>k;
    for(int i=1;i<=n;++i) cin>>a[i];
    sort(a+1,a+1+n);
    int ans = 0;
    for(int i=1;i<=n;++i) dp[i][1] = 1;    //第一列
    for(int i=1;i<=(a[n] - a[1])/(k-1);++i) ans = (ans + solve(i))%mod;
    cout<<ans<<endl;
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页