16、5G毫米波通信信道与技术概述

5G毫米波通信信道与技术概述

1. 引言

5G毫米波通信在提供更高的区域流量容量方面具有巨大潜力,其频率高于30GHz,拥有大量潜在可用频谱。为满足5G无线通信系统对高数据速率和高流量密度的要求,基于毫米波频段的无线接入技术(RAT)成为关键组成部分。然而,毫米波信道的独特特性对信道建模提出了新要求,因此需要开发新的信道建模方法。本文将探讨毫米波信道的特性、5G毫米波信道模型的要求,并介绍两种满足要求的信道模型,同时讨论相关的信号处理技术。

2. 毫米波信道特性

与厘米波频段相比,毫米波频段的无线电传播特性需要更多研究。基于现有研究,毫米波频段的无线电传播具有以下独特特征:
- 高路径损耗 :根据Friis方程,自由空间中无线电传播的功率损耗与信号频率的平方成反比。频率增加10倍,接收功率将降低20dB。此外,毫米波无线电传播还存在更高的大气气体损耗、雨衰和植被损耗。
- 对传播环境敏感 :由于毫米波波长较短,传播环境中的小物体(如灯、树和小家具)变得更加显著,反射表面的不规则性也变得重要。这导致传播环境更加复杂,信道参数(如路径数量、功率延迟分布和功率角谱)与低频段不同。
- 易受几何遮挡影响 :随着无线电频率的增加,传播行为更像光传播,衍射概率低,导致遮挡概率高。建筑物后面或拐角处的接收器可能会受到严重衰减,这种由于大物体引起的高阴影衰落被称为几何诱导遮挡损耗。
- 时空非平稳性 :在实际通信场景中,环境是动态的,小的移动物体(在低频段几乎不可见)会导致高频段传播的湍流,使信道变得非

内容概要:本文详细介绍了一个基于CNN-GRUAdaBoost集成的深度学习模型在时间序列预测中的完整项目实现。该模型通过卷积神经网络(CNN)提取局部时空特征,利用门控循环单元(GRU)捕捉长期时序依赖,并结合AdaBoost自适应提升算法增强模型泛化能力鲁棒性,有效应对非线性、噪声干扰和复杂动态变化的挑战。项目涵盖从数据生成、预处理、模型构建、训练优化到结果可视化和GUI交互界面开发的全流程,提供了完整的代码示例模块化系统架构设计,支持金融、能源、交通、医疗等多个领域的高精度预测应用。; 适合人群:具备一定Python编程基础和机器学习知识,熟悉深度学习框架(如TensorFlow/Keras)的数据科学家、算法工程师及高校研究人员,尤其适合从事时间序列分析、智能预测系统开发的相关从业者。; 使用场景及目标:①实现高精度时间序列预测,如股票价格、电力负荷、交通流量等;②构建具备强鲁棒性和抗噪能力的工业级预测系统;③开发集成深度学习集成学习的复合模型以提升预测稳定性;④通过GUI界面实现模型的便捷部署交互式分析。; 阅读建议:建议读者结合文档中的代码逐步实践,重点关注数据预处理、模型集成机制可视化模块的设计逻辑,同时可在不同数据集上进行迁移实验,深入理解CNN-GRUAdaBoost协同工作的原理优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值