机器学习
栋察一切
这个作者很懒,什么都没留下…
展开
-
SMO算法理解
SMO算法理我们知道SVM的对偶问题如下:最大化:θ(α,β)=∑i=1Nαi−12∑i=1N∑j=1NyiyjαiαjXiTXj限制条件:{0≤αi≤C i=1⋯N∑i=1Nαiyi=0 i=1⋯N(1){最大化:\theta(\alpha,\beta)=\sum_{i=1}^N\alpha_i-\frac{1}{2}\s...原创 2020-03-07 18:10:44 · 290 阅读 · 1 评论 -
SVM算法理论推导
SVM算法理论推导断断续续折腾了好几天,终于对SVM算法有了个大致的了解,趁热将自己的理解写下来,一方面加深自己的理解,另一方面以便日后有所遗忘时可随时查阅。理解有不对的地方,请大家多多批评指正。(1)将原问题化为对偶问题支持向量机的原问题:最小化:12∣∣W∣∣2+C∑i=1Nξi限制条件:{ξi≥0 i=1⋯Nyi[WTφ(Xi)+b]≥1−ξi&nb...原创 2020-03-01 12:50:45 · 283 阅读 · 0 评论 -
原问题与对偶问题的定义和关系
原问题与对偶问题的定义和关系(1)原问题与对偶问题定义一个优化问题的原问题和对偶问题定义如下:原问题:最小化: f(w)限制条件:{gi(w)≤0 i=1⋯Khi(w)=0 i=1⋯M(1)最小化:~~~f(w)\\限制条件: \begin{cases} g_i(w)\leq0~~...原创 2020-02-27 21:56:35 · 15488 阅读 · 0 评论 -
SVM处理非线性问题
SVM处理非线性问题理解(1)利用核函数在现实任务中,原始样本空间也许并不存在一个能正确划分两类样本的超平面,那这个时候应该怎么办呢?我们的想法是仍然去找平面,但我们去更高的纬度里去找平面。在低维空间里一些线性不可分的数据集,到高维空间里面将会以更大的概率被线性分开。有人证明,在特征空间中随机的选取一些点,同时随机的将这些点分成两类,那么在越高维度的空间里进行这个操作,这些点能被线性分开的概率...原创 2020-02-27 11:39:02 · 6243 阅读 · 0 评论 -
不等式约束优化问题及KKT条件理解
拉格朗日乘子法及KKT条件理解我们只考虑不等式约束下的优化问题,如:minf(x)minf(x)minf(x)s.t.g(x)≤0s.t.g(x)\leq0s.t.g(x)≤0这里xxx是多维的向量,约束不等式g(x)≤0g(x)\leq0g(x)≤0表示的是多维空间上的一个区域,因此我们定义可行性域K=x∈Rn∣g(x)≤0K={x\in R^n|g(x)\leq0}K=x∈Rn...原创 2020-02-26 17:05:55 · 2406 阅读 · 1 评论