二分法原理及代码实现

二分法

一个函数在定义域内单调有根,通过将根区间不断等分寻找近似解或精确解的方法。

算法步骤

步骤1: 准备 计算f(x)在有根区间[a,b]端点处的值f(a),f(b).
步骤2: 二分 计算f(x)在区间中点 (a+b)/2处的值 f((a+b)/2).
步骤3: 判断 若f((a+b)/2)=0,则(a+b)/2即是根,计算过程结束,否则检验;若f((a+b)/2)f(a)<0,则以(a+b)/2代替b,否则以(a+b)/2代替a.

反复执行步骤2和步骤3,直到区间[a,b]的长度小于允许误差e,此时中点(a+b)/2即为所
求近似根。

算法流程

例题

例:证明方程x3 +x-4=0在[1,3]内有一个根;若采用对分区间法求误差的绝对值不大于10-3的近似根,则至少迭代计算多少次?

源码

// An highlighted block
#include "stdio.h"
#include 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值