在一个 n * m 的二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
解析:
画个图大概就出来了。
首先从最下一层找,使用二分找到第一个比当前值大的一个数字,找到了就往矩阵右上方继续找,再次用二分找这个数字所在的这一列最后一个比target小的数字,中间有等于的情况返回正确,其他越界的情况返回false即可。
class Solution {
public:
bool findNumberIn2DArray(vector<vector<int>>& matrix, int target) {
int len1=matrix.size();
if(len1==0){
return false;
}
int len2=matrix[0].size();
if(len2==0){
return false;
}
int down=len1-1,left=0;
while(left<len2&&down>=0){
int l=left,r=len2-1,ans=left;
while(l<=r){
int mid =(l+r)/2;
if(matrix[down][mid]<target){
if(mid==len2-1){
return false;
}
if(matrix[down][mid+1]>target){
ans =mid+1;
break;
}
else{
l=mid+1;
}
}
if(matrix[down][mid]==target){
return true;
}
if(matrix[down][mid]>target){
r= mid-1;
}
}
l=0,r=down-1;
int ans_l=down-1;
while(l<=r){//找最后一个小于target的数字
int mid =(l+r)/2;
if(matrix[mid][ans]>target){
r=mid-1;
if(mid ==0){
return false;
}
if(matrix[mid-1][ans]==target){
return true;
}
if(matrix[mid-1][ans]<target){
ans_l=mid-1;
break;
}
}
else if (matrix[mid][ans]==target){
return true;
}
else {
l=mid+1;
}
}
down=ans_l;
left=ans;
}
return false;
}
};