解法一:暴力解法(略)
时间复杂度
O
(
n
2
)
O(n^2)
O(n2),显然不算高效。
解法二:线性二分查找
对数组的每一行做二分查找,时间复杂度
O
(
n
l
o
g
m
)
O(nlogm)
O(nlogm)。不够好。
解法三:二维二分查找
线性二分查找的特点是,每次查找都能缩小一半查找范围。
对本题来说,可以从右上角或者左下角开始查找,可以实现缩小查找范围的效果。
查找起始点:
(1)左上角,所有数据都比它大,无法缩小查找范围。
(2)右下角,所有数据都比它小,无法缩小查找范围。
(3)左下角,右边数据比它大,上边数据比它小,可以逐步缩小查找范围。
(4)右上角,左边数据比它小,下边数据比它大,可以逐步缩小查找范围。
以左下角或者右上角为查找起点,该点是所在行、列所构成的有序数据序列的中点。由此,可以进行二维上的二分查找。(有点类似二叉查找树、AVL树)。
例,从右上角出发,找到5。
用c语言刷题有点痛苦啊,要考虑的细节太多了,不过收获也挺多。
bool类型从C99开始可以使用。
bool findNumberIn2DArray(int** matrix, int matrixSize, int* matrixColSize, int target){
// step1.对非法输入进行检查
// matrix不能是空指针
if(!matrix) return false;
// 二维矩阵行数不能为0
int rows = matrixSize;
if(rows == 0) return false;
// matrixColSize不能为空指针
if(!matrixColSize) return false;
// 二维矩阵列数不能为0
int cols = *matrixColSize;
if(cols == 0) return false;
// step2. 开始查找
// 特例1,target < min(matrix)
if(target < matrix[0][0]) return false;
// 特例2.target > max(matrix)
if(target > matrix[rows-1][cols-1]) return false;
// 当 min(matrix) <= target <= max(target)
// 从右上角开始,进行二维的二分查找
int row = 0, col = cols - 1;
bool flag = false; //标志变量,true表示找到
while(row < rows && col >=0)
{
if(target > matrix[row][col]) row++;
else if(target < matrix[row][col]) col--;
else
{
flag = true;
break;
}
}
return flag;
}
时间复杂度 O ( n + m ) O(n+m) O(n+m),空间复杂度 O ( 1 ) O(1) O(1)。