CodeForces 633D Fibonacci-ish

Fibonacci-ish
time limit per test
3 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

Yash has recently learnt about the Fibonacci sequence and is very excited about it. He calls a sequence Fibonacci-ish if

the sequence consists of at least two elements
f0 and f1 are arbitrary
fn + 2 = fn + 1 + fn for all n ≥ 0.

You are given some sequence of integers a1, a2, …, an. Your task is rearrange elements of this sequence in such a way that its longest possible prefix is Fibonacci-ish sequence.
Input

The first line of the input contains a single integer n (2 ≤ n ≤ 1000) — the length of the sequence ai.

The second line contains n integers a1, a2, …, an (|ai| ≤ 109).
Output

Print the length of the longest possible Fibonacci-ish prefix of the given sequence after rearrangement.
Examples
input

3
1 2 -1

output

3

input

5
28 35 7 14 21

output

4

Note

In the first sample, if we rearrange elements of the sequence as  - 1, 2, 1, the whole sequence ai would be Fibonacci-ish.

In the second sample, the optimal way to rearrange elements is , , , , 28.

这道题就是需要注意剪枝
代码如下:

#include <bits/stdc++.h>
#define ll long long
#define pb push_back
#define inf 0x3f3f3f3f
using namespace std;
const int N=1e3+100;
int arr[N];
int cnt[N];
int main()
{
    ios::sync_with_stdio(false);
    int n;
    cin>>n;
    map<ll,int>mp;
    for(int i=0;i<n;i++)
    {
        cin>>arr[i];
        mp[arr[i]]++;
    }
    int mx=2;
    sort(arr,arr+n);
    mx=max(mp[0],mx);
    for(int i=0;i<n;i++)
    {
        if(i&&arr[i]==arr[i-1])
                continue;
        for(int j=0;j<n;j++)
        {
            if(i==j)
                continue;
            int a1=arr[i],a2=arr[j];
            if(a1==0&&a2==0) continue;
            int cnt=2;
            map<ll,int>mp2;
            mp2[a1]++,mp2[a2]++;
            while(++mp2[a1+a2]<=mp[a1+a2])
            {
                int t=a1;
                cnt++,a1=a2,a2+=t;
            }
            mx=max(cnt,mx);
        }
    }
    cout<<mx<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值