6298 Maximum Multiple (找规律

本文介绍了一种通过打表寻找规律的算法实现方法,当输入数值n满足特定条件时(如n能被3整除或n能被4整除),算法会将n拆分为若干部分并计算这些部分的乘积。此算法适用于竞赛编程中快速解决问题。

打表找规律
在n%3==0时 分三份
在n%4==0时分成n/2 n/4 n/4

#include<bits/stdc++.h>
using namespace std;
int T;
long long n;
int main(){
    scanf("%d",&T);
    while (T--){
        scanf("%lld",&n);
        if (!(n%3)){
            long long tmp=n/3;
            printf("%lld\n",tmp*tmp*tmp);
        }else if (!(n%4)){
            long long tmp=n/4;
            printf("%lld\n",tmp*tmp*2*tmp);
        }else printf("-1\n");
    }
    return 0;
}
内容概要:本文研究了一种基于短时傅里叶变换(STFT)结合卷积神经网络(CNN)与残差网络(ResNet)的故障诊断方法,并提供了Matlab代码实现。该方法首先利用STFT将一维时域振动信号转换为二维时频图,以直观呈现信号的频率随时间变化特征;随后构建CNN-ResNet深度学习模型,通过卷积层自动提取故障相关的深层特征,并利用ResNet的残差结构缓解深层网络训练中的梯度消失问题,提升模型收敛速度与诊断精度。整个流程实现了端到端的故障识别,适用于轴承、齿轮箱等机械设备的智能故障诊断。; 适合人群:具备一定信号处理基础和Matlab编程能力,从事机械故障诊断基于短时傅里叶变换(STFT)结合卷积神经网络(CNN)和残差网络(ResNet)的故障诊断研究(Matlab代码实现)、工业自动化或智能制造方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于旋转机械系统的状态监测与早期故障预警;②用于学术研究中对比不同深度学习模型在故障诊断中的性能差异;③作为智能运维系统的核心算法模块,提升设备维护效率与可靠性。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,深入理解STFT时频分析原理与CNN-ResNet网络架构设计,同时可尝试在公开数据集(如CWRU轴承数据集)上验证模型效果,并进一步探索其他时频分析方法与网络结构的融合优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值