目录
容器操作
Stream的操作 三个步骤
Stream的中间操作
终止操作
容器操作
1.Collection工具类
类 java.util.Collections 提供了对容器操作的工具方法,与 Arrays 使用差不多。
2.常用方法
void sort(List) //对 List 容器内的元素排序,按照升序进行排序。
void shuffle(List) //对 List 容器内的元素进行随机排列
void reverse(List) //对 List 容器内的元素进行逆续排列
void fill(List, Object) //用一个特定的对象重写整个 List 容器
int binarySearch(List, Object)//采用折半查找的方法查找特定对象
List aList = new ArrayList();
for (int i = 0; i < 5; i++)
aList.add("a" + i);
System.out.println(aList);
Collections.shuffle(aList); // 随机排列
System.out.println(aList);
Collections.reverse(aList); // 逆续
System.out.println(aList);
Collections.sort(aList); // 排序
System.out.println(aList);
System.out.println(Collections.binarySearch(aList, "a2"));
Collections.fill(aList, "hello");
System.out.println(aList);
3.Comparable接口
Comparable接口中只有一个方法
public int compareTo(Object obj);
该方法:
返回 0 表示 this == obj
返回正数表示 this > obj
返回负数表示 this < obj
实现了Comparable 接口的类通过实现 comparaTo 方法从而确定该类对象的排序方式。
4.Comparator 接口
Comparator比较器,可以根据需要定制特定的比较规则
List<Student> stus = new ArrayList<Student>(){
{
add(new Student("张三", 30));
add(new Student("李四", 20));
add(new Student("王五", 60));
}
};
//对users按年龄进行排序
Collections.sort(stus, new Comparator<Student>() {
@Override
public int compare(Student s1, Student s2) {
// 升序
//return s1.getAge()-s2.getAge();
return s1.getAge().compareTo(s2.getAge());
// 降序
// return s2.getAge()-s1.getAge();
// return s2.getAge().compareTo(s1.getAge());
}
});
还可以使用lambda表达式简化代码, 前提是JDK8开发环境,
List<Student> stus = new ArrayList<Student>(){
{
add(new Student("张三", 30));
add(new Student("李四", 20));
add(new Student("王五", 60));
}
};
//对users按年龄进行排序
Collections.sort(stus, (s1,s2)->(s1.getAge()-s2.getAge()));
Stream的操作三个步骤
stream 是数据渠道,用于操作数据源(集合、数组)所生产的元素序列。
1、创建Stream
一个数据源(如:集合、数组),获取一个流
2、中间操作
一个中间操作链,对数据源的数据进行处理
3、终止操作
一个终止操作,执行中间操作链,并产生结果
创建Stream
/*** StreamAPI三个操作步骤:
* 1、创建Stream
* 2、中间操作
* 3、终止操作
*/
public class TestStreamAPI1 {
// 创建Stream
@Test
public void test1() {
// 1、可以通过Conllection系列集合提供的顺序流stream()或并行流parallelStream()
List<String> list = new ArrayList<>();
Stream<String> stream1 = list.stream();
stream1 = list.parallelStream();
// 2、通过Arrays中的静态方法stream()获取数据流
Integer ints[] = new Integer[10];
Stream<Integer> stream2 = Arrays.stream(ints);
// 3、通过Stream类中的静态方法of()
Stream<String> stream3 = Stream.of("aa", "bb", "cc");
String str[] = new String[10];
Stream<String> stream4 = Stream.of(str)
}
}
Stream的中间操作
多个中间操作可以连接起来形成一个流水线,除非流水线上触发终止操作,否则中间操作不会执行任何的处理,而在终止操作时一次性全部处理,称为”惰性求值”.
筛选和切片
filter
List<Employee> emps = Arrays.asList(
new Employee("张三", 18, 3333.33),
new Employee("李四", 38, 4444.44),
new Employee("王五", 50, 5555.55),
new Employee("赵六", 16, 6666.66),
new Employee("田七", 28, 7777.77) );
// filter-接收Lambda,从流中排除某些元素
@Test
public void test1() {
Stream<Employee> stream = emps.stream() .filter((e) -> {
System.out.println("StreamAPI的中间操作");
return e.getAge() > 35;
});
// 终止操作:一次性执行全部内容,即“惰性求值”
stream.forEach(System.out::println); }
limit
// limit-截断流,使其元素不超过给定数量
@Test
public void test2() {
emps.stream() .filter((e) -> e.getSalary() > 5000)
.limit(2)
.forEach(System.out::println);
}
skip
// skip-跳过元素,返回一个扔掉了前n个元素的流,若流中元素不足n个,则返回一个空流。
@Test
public void test3() {
emps.stream() .filter((e) -> e.getSalary() > 5000)
.skip(2)
.forEach(System.out::println);
}
distinct
// distinct-筛选,通过流所生产元素的hashCode()和equals()去除重复元素
@Test
public void test4() {
emps.stream() .filter((e) -> e.getSalary() > 5000)
.distinct()
.forEach(System.out::println); }
排序
sorted(Comparable)-自然排序
// sorted(Comparable)-自然排序
@Test
public void test1() {
List<String> list = Arrays.asList("cc", "aa", "bb", "ee", "dd");
list.stream()
.sorted()
.forEach(System.out::println);
}
sorted(Comparator)-定制排序
// sorted(Comparator)-定制排序
// 需求:按年龄排序,年龄一样按姓名排序
@Test
public void test2() {
emps.stream() .sorted((e1, e2) -> {
if(e1.getAge().equals(e2.getAge())) {
return e1.getName().compareTo(e1.getName());
}else {
return e1.getAge().compareTo(e2.getAge());
}
}).forEach(System.out::println); }
终止操作
查找于匹配
public void test1() {
// allMatch-检查是否匹配所有元素
boolean b1 = emps.stream() .allMatch((e) -> e.getStatus().equals(Status.BUSY)); System.out.println(b1);
// anyMatch-检查是否至少匹配一个元素
boolean b2 = emps.stream() .anyMatch((e) -> e.getStatus().equals(Status.BUSY)); System.out.println(b2);
// noneMatch-检查是否没有匹配所有元素
boolean b3 = emps.stream() .noneMatch((e) -> e.getStatus().equals(Status.OTHER)); System.out.println(b3);
// findFirst-返回第一个元素
// 需求:按工资排序,获取第一个员工信息
Optional<Employee> op1 = emps.stream() .sorted((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary())) .findFirst();
System.out.println(op1.get());
// findAny-返回当前流中的任意元素
// 需求:找一个空闲状态的员工,添加到开发团队中
Optional<Employee> op2 = emps.parallelStream()
// 并行流-多条线程进行,谁先找到就是谁 .filter((e) -> e.getStatus().equals(Status.FERR)) .findAny();
System.out.println(op2.get());
// count-返回流中元素的总个数
Long count = emps.stream().count();
System.out.println(count);
// max-返回流中最大值
// 需求:获取工资最高的员工信息
Optional<Employee> op3 = emps.stream() .max((e1, e2) -> Double.compare(e1.getSalary(), e2.getSalary()));
System.out.println(op3.get());
// min-返回流中最小值
// 需求:获取公司中工资最少员工的工资
Optional<Double> op4 = emps.stream() .map(Employee::getSalary) .min(Double::compare); System.out.println(op4.get()); }
注意:
1、Stream自己不会存储元素
2、Stream不会改变源对象。相反,会返回一个持有结果的新Stream。
3、Stream操作是延迟执行的,这意味着他们会等到需要结果的时候才执行。