描述
有一块矩形大蛋糕,长和宽分别是整数w 、h。现要将其切成m块小蛋糕,每个小蛋糕都必须是矩形、且长和宽均为整数。切蛋糕时,每次切一块蛋糕,将其分成两个矩形蛋糕。请计算:最后得到的m块小蛋糕中,最大的那块蛋糕的面积下限。
假设w= 4, h= 4, m= 4,则下面的切法可使得其中最大蛋糕块的面积最小。
假设w= 4, h= 4, m= 3,则下面的切法会使得其中最大蛋糕块的面积最小:
输入
共有多行,每行表示一个测试案例。每行是三个用空格分开的整数w, h, m ,其中1 ≤ w, h, m ≤ 20 , m ≤ wh. 当 w = h = m = 0 时不需要处理,表示输入结束。
输出
每个测试案例的结果占一行,输出一个整数,表示最大蛋糕块的面积下限。
样例输入
4 4 4
4 4 3
0 0 0
样例输出
4
6
//对动态规划没什么把握,参考了老师讲解及网络中做法
//用递归思路来做递推的题 ,找出边界,及其它条件最大值等
//Writed by Wangzhimin Date:2024/01/16
#include<bits/stdc++.h>
using namespace std;
int ways[25][25][25];//动态规划的数组 其实可先求出,直接输出找到的那个值
int w,h,m;//长宽及几块
int main()
{
while(scanf("%d%d%d",&w,&h,&m)!=EOF)
{
if(w==0) break;
memset(ways,0x3e3e3e3e,sizeof(ways));//use 长宽的积就是个大数了再加上1或是*m,相当于没切
//但就是不行,过不了。 只有用超大的数来初始化
for(int i=1;i<=w;i++)//长从1变化到长度值
for(int j=1;j<=h;j++)//宽的变化 ,直到h值
for(int k=0;k<=m-1;k++)//1块时不用切,就是0,从0开始到m-1刀
{
ways[i][j][0] = i * j;//边界条件,没切时的值
for(int v=1;v<i;v++)//一方向切一,及到i的最大cake的面积
for(int n=0;n<k;n++)//切成1块到m块的取值
//切成v和i-v时,取个大的,与原ijk位上的值比较,取个小的
ways[i][j][k]=min(ways[i][j][k],max(ways[v][j][n],ways[i-v][j][k-1-n]));
for(int t=1;t<j;t++)//二方向切一,及到j的最大cake面积
for(int n=0;n<k;n++)
//切成t和j-t时
ways[i][j][k]=min(ways[i][j][k],max(ways[i][t][n],ways[i][j-t][k-1-n]));
}
cout<<ways[w][h][m-1]<<endl;//长w宽h,切m-1刀(即成m块)时取值
}
}