设计与算法:分蛋糕

描述

有一块矩形大蛋糕,长和宽分别是整数w 、h。现要将其切成m块小蛋糕,每个小蛋糕都必须是矩形、且长和宽均为整数。切蛋糕时,每次切一块蛋糕,将其分成两个矩形蛋糕。请计算:最后得到的m块小蛋糕中,最大的那块蛋糕的面积下限。

假设w= 4, h= 4, m= 4,则下面的切法可使得其中最大蛋糕块的面积最小。

假设w= 4, h= 4, m= 3,则下面的切法会使得其中最大蛋糕块的面积最小:

输入

共有多行,每行表示一个测试案例。每行是三个用空格分开的整数w, h, m ,其中1 ≤ w, h, m ≤ 20 , m ≤ wh. 当 w = h = m = 0 时不需要处理,表示输入结束。

输出

每个测试案例的结果占一行,输出一个整数,表示最大蛋糕块的面积下限。

样例输入

4 4 4
4 4 3
0 0 0

样例输出

4
6

//对动态规划没什么把握,参考了老师讲解及网络中做法 
//用递归思路来做递推的题 ,找出边界,及其它条件最大值等 
//Writed by Wangzhimin Date:2024/01/16
#include<bits/stdc++.h>
using namespace std;
int ways[25][25][25];//动态规划的数组 其实可先求出,直接输出找到的那个值 
int w,h,m;//长宽及几块 
int main()
{
    while(scanf("%d%d%d",&w,&h,&m)!=EOF)
    {
        if(w==0) break;
    memset(ways,0x3e3e3e3e,sizeof(ways));//use 长宽的积就是个大数了再加上1或是*m,相当于没切 
    //但就是不行,过不了。  只有用超大的数来初始化 
    for(int i=1;i<=w;i++)//长从1变化到长度值 
           for(int j=1;j<=h;j++)//宽的变化 ,直到h值 
             for(int k=0;k<=m-1;k++)//1块时不用切,就是0,从0开始到m-1刀 
           {
                  ways[i][j][0] = i * j;//边界条件,没切时的值 
        for(int v=1;v<i;v++)//一方向切一,及到i的最大cake的面积 
                   for(int n=0;n<k;n++)//切成1块到m块的取值 
                //切成v和i-v时,取个大的,与原ijk位上的值比较,取个小的 
               ways[i][j][k]=min(ways[i][j][k],max(ways[v][j][n],ways[i-v][j][k-1-n]));
        for(int t=1;t<j;t++)//二方向切一,及到j的最大cake面积 
                for(int n=0;n<k;n++)
                //切成t和j-t时 
               ways[i][j][k]=min(ways[i][j][k],max(ways[i][t][n],ways[i][j-t][k-1-n]));
              }
    cout<<ways[w][h][m-1]<<endl;//长w宽h,切m-1刀(即成m块)时取值 
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值