总时间限制: 1000ms 内存限制: 65536kB
描述
有一块矩形大蛋糕,长和宽分别是整数w 、h。现要将其切成m块小蛋糕,每个小蛋糕都必须是矩形、且长和宽均为整数。切蛋糕时,每次切一块蛋糕,将其分成两个矩形蛋糕。请计算:最后得到的m块小蛋糕中,最大的那块蛋糕的面积下限。
假设w= 4, h= 4, m= 4,则下面的切法可使得其中最大蛋糕块的面积最小。
假设w= 4, h= 4, m= 3,则下面的切法会使得其中最大蛋糕块的面积最小:
输入
共有多行,每行表示一个测试案例。每行是三个用空格分开的整数w, h, m ,其中1 ≤ w, h, m ≤ 20 , m ≤ wh. 当 w = h = m = 0 时不需要处理,表示输入结束。
输出
每个测试案例的结果占一行,输出一个整数,表示最大蛋糕块的面积下限。
样例输入
4 4 4
4 4 3
0 0 0
样例输出
4
6
直接枚举DP
f[i][j][k]表示把i*j分成k个蛋糕的最小的最大面积
枚举横切竖切形成的新蛋糕即可
#include<cstdio>
#include<iostream>
using namespace std;
#define N 25
#define INF 5005
int f[N][N][N];int w,h,m;
int main(){
w=h=m=20;
for(int i=1;i<=w;i++){
for(int j=1;j<=h;j++){
f[i][j][1]=i*j;
for(int k=2;k<=m;k++){
f[i][j][k]=INF;
for(int r=1;r<i;r++){
f[i][j][k]=min(f[i][j][k],max(f[r][j][k-1],(i-r)*j));
for(int p=1;p<k;p++)
f[i][j][k]=min(f[i][j][k],max(f[r][j][p],f[i-r][j][k-p]));
}
for(int c=1;c<j;c++){
f[i][j][k]=min(f[i][j][k],max(f[i][c][k-1],(j-c)*i));
for(int p=1;p<k;p++)
f[i][j][k]=min(f[i][j][k],max(f[i][c][p],f[i][j-c][k-p]));
}
}
}
}
while(scanf("%d%d%d",&w,&h,&m)&&(w||h||m)){
printf("%d\n",f[w][h][m]);}
return 0;
}