一、建树(node包含左右子树下标)
#include <iostream>
#include <vector>
#include <queue>
using namespace std;
struct node
{
int data;
int lchild,rchild;
};
vector<int> post,in;
vector<node> T;
int lca(int inl,int inr,int postRoot){
if(inl>inr) return -1;
int inRoot=inl;
while(in[inRoot]!=post[postRoot]) inRoot++;
//T[index]的index可以随意设定,只要与lchild\rchild\以及每次的返回对应
//还是最好设定成index*2+1,index*2+2这种的比较好
T[inRoot].data=post[postRoot];
T[inRoot].lchild=lca(inl,inRoot-1,postRoot-(inr-inRoot)-1);
T[inRoot].rchild=lca(inRoot+1,inr,postRoot-1);
return inRoot;
}
int flag=0;
void levelOrderTraversal(int root){
queue<int> q;
q.push(root);
while(!q.empty()){
int tmp=q.front();
q.pop();
printf("%s%d",flag==1?" ":"",T[tmp].data);
flag=1;
if(T[tmp].lchild!=-1) q.push(T[tmp].lchild);
if(T[tmp].rchild!=-1) q.push(T[tmp].rchild);
}
}
int main(){
int n;
scanf("%d",&n);
post.resize(n+1),in.resize(n+1),T.resize(n+1);
for(int i=1;i<=n;i++) scanf("%d",&post[i]);
for(int i=1;i<=n;i++) scanf("%d",&in[i]);
int root=lca(1,n,n);
levelOrderTraversal(root);
return 0;
}
二、不建树(node只包含符合二叉树规则的index)
#include <iostream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;
struct node
{
int index;
int data;
};
vector<int> post,in;
vector<node> T;
//这样建出来的T,因为push_back的顺序还是按照先序排列的,要层序输出需要按照index升序排列
//【因为没建树不知道左右儿子,只能根据index输出】
void lca(int inl,int inr,int postRoot,int index){//index确定之后就知道root的index一定是0了,不用再返回root
if(inl>inr) return;
int inRoot=inl;
while(in[inRoot]!=post[postRoot]) inRoot++;
T.push_back({index,post[postRoot]});//但是index不知道最大多少,不能用index索引
lca(inl,inRoot-1,postRoot-(inr-inRoot)-1,index*2+1);//lchild和rchild现在也唯一确定了
lca(inRoot+1,inr,postRoot-1,index*2+2);
}
bool cmp(node a,node b){
return a.index<b.index;
}
int main(){
int n;
scanf("%d",&n);
post.resize(n+1),in.resize(n+1);
for(int i=1;i<=n;i++) scanf("%d",&post[i]);
for(int i=1;i<=n;i++) scanf("%d",&in[i]);
lca(1,n,n,0);
sort(T.begin(),T.end(),cmp);
int flag=0;
for(int i=0;i<T.size();i++){
printf("%s%d",flag==1?" ":"",T[i].data);
flag=1;
}
return 0;
}