单起点最短路->一对多:Dijkstra算法
单终点最短路->多对一:反着建图+Dijstra算法
#include <bits/stdc++.h>
using namespace std;
struct node
{
int v,w;
friend bool operator < (const node &n1,const node &n2){
return n1.w>n2.w;
}
};
int nv,ne;
#define maxn 10010
vector<node> G[maxn];
int dist[maxn];
int collected[maxn];
priority_queue<node> h;
void dijkstra(int s){
fill(dist,dist+maxn,10010);
fill(collected,collected+maxn,0);
dist[s]=0;
h.push(node{s,0});
while(!h.empty()){
node minNode=h.top();
h.pop();
if(collected[minNode.v]) continue;
collected[minNode.v]=1;
for(int i=0;i<G[minNode.v].size();i++){
int v=G[minNode.v][i].v;
int w=G[minNode.v][i].w;
if(!collected[v]){
if(dist[v]>minNode.w+w){
dist[v]=minNode.w+w;
h.push(node{v,dist[v]});
}
}
}
}
}
int main(){
scanf("%d %d",&nv,&ne);
int t1,t2,tw;
for(int i=0;i<ne;i++){
scanf("%d %d %d",&t1,&t2,&tw);
G[t1].push_back(node{t2,tw});
//每次根据G[x].size()来索引,只要不插在任何G[t1]后面就不会影响dijstra结果
G[t2+nv].push_back(node{t1+nv,tw});//反着建图
}
dijkstra(1);
int ans=0;
for(int i=2;i<=nv;i++){
ans+=dist[i];
}
//两个dijstra在开头又初始化了dist[],不能放一起累加
dijkstra(1+nv);
for(int i=2;i<=nv;i++){
ans+=dist[i+nv];
}
printf("%d",ans);
return 0;
}