【洛谷】P1629 邮递员送信

本文介绍了Dijkstra算法在解决单起点和单终点最短路径问题中的应用。通过反向构建图,实现了从单起点到多终点以及从多起点到单终点的最短路径计算。代码示例展示了如何使用C++实现这一算法,并给出了完整的解决方案。
摘要由CSDN通过智能技术生成

单起点最短路->一对多:Dijkstra算法

单终点最短路->多对一:反着建图+Dijstra算法

#include <bits/stdc++.h>
using namespace std;

struct node
{
    int v,w;
    friend bool operator < (const node &n1,const node &n2){
        return n1.w>n2.w;
    }
};
int nv,ne;
#define maxn 10010
vector<node> G[maxn];

int dist[maxn];
int collected[maxn];
priority_queue<node> h;
void dijkstra(int s){
    fill(dist,dist+maxn,10010);
    fill(collected,collected+maxn,0);
    dist[s]=0;
    h.push(node{s,0});
    while(!h.empty()){
        node minNode=h.top();
        h.pop();
        if(collected[minNode.v]) continue;
        collected[minNode.v]=1;

        for(int i=0;i<G[minNode.v].size();i++){
            int v=G[minNode.v][i].v;
            int w=G[minNode.v][i].w;
            if(!collected[v]){
                if(dist[v]>minNode.w+w){
                    dist[v]=minNode.w+w;
                    h.push(node{v,dist[v]});
                }
            }
        }
    }
}

int main(){
    scanf("%d %d",&nv,&ne);

    int t1,t2,tw;
    for(int i=0;i<ne;i++){
        scanf("%d %d %d",&t1,&t2,&tw);
        G[t1].push_back(node{t2,tw});
        //每次根据G[x].size()来索引,只要不插在任何G[t1]后面就不会影响dijstra结果
        G[t2+nv].push_back(node{t1+nv,tw});//反着建图
    }
    
    dijkstra(1);
    int ans=0;
    for(int i=2;i<=nv;i++){
        ans+=dist[i];
    }
    //两个dijstra在开头又初始化了dist[],不能放一起累加
    dijkstra(1+nv);
    for(int i=2;i<=nv;i++){
        ans+=dist[i+nv];
    }
    printf("%d",ans);
    
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值