coder-strike 2014 B Multi-core Processor

coder-strike 2014   B   Multi-core Processor          题目链接:http://codeforces.com/contest/411/problem/B

题目大意:一个多核的数据处理机(n个核)可以操作k块存储空间,给出m条指令【指令矩阵n行m列,每条指令是一竖列】,数字Xij代表第i个处理机内核在第j条指令中要向第Xij块存储空间中作写操作(若Xij==0,则代表不作任何操作)。现定义同一指令中向同一块存储空间写数据的两个处理机内核会相互死锁,并造成此存储空间的死锁,以后访问此存储空间的内核都会死锁(所有死锁都不可解)。问这n个内核分别是在执行哪一条指令时死锁的(没死锁输出0).

题目分析:指令矩阵要横着输入,处理时就竖着来了。定义两个数组来处理中间结果,lktpry记录每条指令执行过程中访问过的存储空间号(同一条指令中再来一次就死锁了),cache记录的是已死锁存储空间号(初次死锁是要将当前指令号记录在结果数组里),剩下的就是逻辑处理了。

code:

#include<cstdio>
#include<cstring>
int main()
{//locktemporary记录本轮暂时有一条记录的,cache记录永久锁上了的
    int n,m,k,a[110][110],ans[110],i,j,l;
    bool cache[110],lktpry[110];
    memset(cache,false,sizeof(cache));
    memset(ans,0,sizeof(ans));
    scanf("%d%d%d",&n,&m,&k);
    for(i=0;i<n;i++)
    {
        for(j=0;j<m;j++)
        {
            scanf("%d",&a[i][j]);
        }
    }
    for(j=0;j<m;j++)
    {
        memset(lktpry,false,sizeof(lktpry));
        for(i=0;i<n;i++)
        {
            if(!a[i][j]||ans[i])continue;
            if(cache[a[i][j]])ans[i]=j+1;
            if(!lktpry[a[i][j]])lktpry[a[i][j]]=true;
            else if(!cache[a[i][j]])
            {
                ans[i]=j+1,cache[a[i][j]]=true;
                for(l=i-1;l>=0;l--)
                {//由于没有记录下首次lock的位置,要往回找,找到相等还不行,还须没记录过答案
                    if(a[l][j]==a[i][j]&&!ans[l])ans[l]=j+1;
                }
            }
        }
    }
    for(i=0;i<n;i++)
    {
        printf("%d\n",ans[i]);
    }
    return 0;
}
PS:初始化很重要,这次终于注意了……





【资源介绍】 1、该资源包括项目的全部源码,下载可以直接使用! 2、本项目适合作为计算机、数学、电子信息等专业的课程设计、期末大作业和毕设项目,也可以作为小白实战演练和初期项目立项演示的重要参考借鉴资料。 3、本资源作为“学习资料”如果需要实现其他功能,需要能看懂代码,并且热爱钻研和多多调试实践。 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip 图像数据处理工具+数据(帮助用户快速划分数据集并增强图像数据集。通过自动化数据处理流程,简化了深度学习项目的数据准备工作).zip
### 部署 DeepSeek-Coder-6.7B-Instruct 模型 为了成功部署 DeepSeek-Coder-6.7B-Instruct 模型,在本地环境中需完成一系列准备工作,包括但不限于环境配置、依赖安装以及最终的启动操作。 #### 所需环境配置 确保操作系统支持并已正确安装 Python 版本 3.x。对于硬件方面的要求取决于具体应用场景;然而,鉴于该模型规模较大,建议配备有高性能 GPU 的机器以加速推理过程[^1]。 #### 安装必要的Python库和其他依赖项 在开始前,确认以下软件包已被正确安装: - **Python 库** - transformers - torch (推荐使用 CUDA 加速版本) - **其他依赖项** - numpy - pandas 可以通过 pip 工具来简化这些库的一键安装流程: ```bash pip install transformers torch numpy pandas ``` 上述命令会自动下载并安装所有必需组件及其最低兼容版本。 #### 获取DeepSeek-Coder-6.7B-Instruct模型文件 访问官方指定链接或仓库地址下载预训练好的 DeepSeek-Coder-6.7B-Instruct 模型权重及相关资源文件。这一步骤至关重要,因为后续加载过程中需要用到确切路径下的特定文件结构。 #### 启动与测试 一旦完成了以上准备步骤,则可以编写简单的脚本来验证整个设置是否正常工作。下面给出了一段用于实例化模型对象并通过给定输入获取预测结果的基础代码片段: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # 初始化分词器和模型 tokenizer = AutoTokenizer.from_pretrained("path/to/deepseek-coder-6.7b-instruct") model = AutoModelForCausalLM.from_pretrained("path/to/deepseek-coder-6.7b-instruct") input_text = "your input text here" inputs = tokenizer(input_text, return_tensors="pt").to('cuda') # 如果GPU可用则移至GPU上运行 outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` 这段代码展示了如何利用 `transformers` 库中的 API 来加载自定义路径下保存的大规模语言模型,并执行基本的任务处理逻辑。注意这里假设读者已经根据前面指导完成了相应环境搭建及数据集放置工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值