蚁群算法解TSP问题

本文探讨了利用蚁群算法来求解旅行商问题(TSP)。TSP是一个经典的NP完全问题,要求在遍历所有城市一次并返回起点的条件下找到最短路径。文中提到的实现未考虑返回起点的城市,提供了算法的代码思路,并引用了相关论文作为学习资源。测试数据和论文下载链接已给出。
摘要由CSDN通过智能技术生成

蚁群算法解TSP问题

    TSP问题(Travelling Salesman Problem),可译为旅行商问题、货郎担问题。其问题描述简单,却具有输入规模的指数函数的计算复杂性,属于NP完全问题。

问题可描述为:

有一位商人,他想访问中国的某些城市,要求:
1. 所走路程最近
2. 每个城市只能访问一次
3. 从某城市出发,最后回到该城市

本文所解的TSP问题与上述第3条不同,只处理了走完所有城市,没有回到出发的城市。

code:

#coding:utf-8

import random

class ACOtspSolution:
    maxgen=2500     #循环次数
    pop_size=380    #蚂蚁个数
    alpha=3         #信息启发式因子
    beta=4          #期望启发式因子
    q=100           #信息素强度
    phinit=20       #初始信息素浓度
    rou=0.3         #信息挥发系数
    def __init__(self,plist):#传入点列表(坐标元组表示)
        self.g=[]  #邻接矩阵,每两个点间的距离
        self.n=len(plist)    #问题规模(点的个数)
        self.pheromone=[[self.phinit]*self.n for i in range(self.n)]
        #信息素list,记载每两点间直接路径上的信息素量
        for i in range(len(plist)):
     
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值