冒泡,选择,希尔,插入,快排,归并,二分法

冒泡

def buble_sort(list):
    '''冒泡排序'''
    n = len(list)
    for j in range(0,n-1):
        count = 0
        for i in range(0,n-1-j):
            if list[i]>list[i+1]:
                list[i],list[i+1] = list[i+1],list[i]
        if count == 0:
            return

if __name__ == '__main__':
    li = [11,424,232,55,334,532,423,444,567,875]
    print(li)
    buble_sort(li)
    print(li)

选择

def select_sort(alist):
    '''选择排序'''
    n = len(alist)
    for j in range(0,n-1):
        min_index = j
        for i in range(1+j, n):
            if alist[min_index] > alist[i]:
                min_index = i
        alist[j],alist[min_index] = alist[min_index],alist[j]

if __name__ == '__main__':
    li = [44, 55, 65, 66, 33, 23, 58, 99]
    print(li)
    select_sort(li)
    print(li)

希尔

def shell_sort(alist):
    '''希尔排序'''
    n = len(alist)

    gap = n//2
    # gap变化到0之前,插入算法执行的次数
    while gap > 0:
        # 插入算法与希尔排序的区别是gap的步长
        for j in range(gap,n):
            # j = [gap,gap+1,gap+2,gap+3,...n-1]
            i = j
            while i > 0:
                if alist[i] < alist[i-gap]:
                    alist[i], alist[i-gap] = alist[i-gap], alist[i]
                    i -=gap
                else:
                    break
        # 缩短gap步长
        gap //= 2
if __name__ == '__main__':
    li = [324,424,232,55,334,532,423,444,567,875]
    print(li)
    shell_sort(li)
    print(li)

插入

# 最坏时间复杂度 为:O(n^2) 最优时间复杂度 为:O(n)  稳定

def insert_sort(alist):
    '''插入排序'''
    n = len(alist)
    # 从右边的无序序列中取出多少个元素执行这样的过程
    for j in range(1,n):
        # i 表示内层循环的起始值
        i =j
        # 执行从右边的无序序列中取出第一个元素,即i的位置的元素,然后将其插入到右边的有序数列的正确位置
        while i > 0:
            if alist[i] < alist[i-1]:
                alist[i],alist[i-1] = alist[i-1],alist[i]
                i -=1
            else:
                break


if __name__ == '__main__':
    li = [33,445,7,6,324,536,647,1,34,5]
    print(li)
    insert_sort(li)
    print(li)

快排



# 最优时间复杂度是:O(nlogn)
# 最坏时间复杂度是:O(nlogn)
# 稳定性:稳定

def merge_sort(alist):
    '''归并排序'''
    n = len(alist)
    if n <= 1:
        return alist
    mid = n // 2

    # left 采用归并排序后形成的有序的新列表
    left_li = merge_sort(alist[:mid])

    # left 采用归并排序后形成的有序的新列表
    right_li = merge_sort(alist[mid:])


    # 将2个有序列表合并成为一个新列表
    left_pointer,right_pointer = 0,0
    result = []

    while left_pointer < len(left_li) and right_pointer < len(right_li):
        if left_li[left_pointer] < right_li[right_pointer]:
            result.append(left_li[left_pointer])
            left_pointer += 1
        else:
            result.append(right_li[right_pointer])
            right_pointer +=1
    result += left_li[left_pointer:]
    result += right_li[right_pointer:]
    return result


if __name__ == '__main__':
    li = [324, 424, 232, 55, 334, 532, 423, 444, 567, 875]
    print(li)
    sort_li = merge_sort(li)
    print(sort_li)

二分法


# 最优时间复杂度是:O(1)
# 最坏时间复杂度是:O(logn)

# 递归 二分法查找必须列表是排序好的
def binary_search(alist,item):
    '''二分法查找'''
    n = len(alist)
    if n > 0:
        mid = n // 2
        if alist[mid] == item:
            return True  # 递归退出的条件
        elif item < alist[mid]:
            return binary_search(alist[:mid],item)
        else:
            return binary_search(alist[mid+1:],item)
    return False

# 非递归
def binary_search_2(alist,item):
    '''二分法查找'''
    n = len(alist)
    first = 0
    last = n-1
    while first <= last:
        mid = (first+last)//2
        if alist[mid] == item:
            return True
        elif item < alist[mid]:
            last = mid-1
        else:
            first = mid+1
    return False



if __name__ == '__main__':
    li = [1, 6, 7, 22, 34, 53, 67, 122, 134]
    print(binary_search(li,34))
    print(binary_search(li,23))
    print(binary_search_2(li,34))
    print(binary_search_2(li,23))




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值