图像处理中的注意力机制

本文探讨了图像处理中的一种重要技术——注意力机制。通过引用多个资源,如空间变换网络和注意力模型的论文笔记,文章阐述了如何在深度学习中使用注意力模型来聚焦关键信息。注意力机制通常涉及encoder和decoder模型,其计算过程包括计算Query和Key的权重系数,并对Value进行加权求和,从而实现信息的重点关注和处理。
摘要由CSDN通过智能技术生成

参考链接:论文笔记:空间变换网络(Spatial Transformer Networks) - PilgrimHui - 博客园

        ​​​​​​​        ​​​​​​​    图像处理中的Attention mechanism学习总结_kiki啊的博客-CSDN博客

                    深度学习中的注意力模型(2017版) - 知乎

注意力机制即在众多的信息中对重点信息进行重点关注的方式,采用encoder和decoder模型方式,示意 

Attention机制的具体计算过程,如果对目前大多数方法进行抽象的话,可以将其归纳为两个过程:第一个过程是根据Query和Key计算权重系数,第二个过程根据权重系数对Value进行加权求和。而第一个过程又可以细分为两个阶段:第一个阶段根据Query和Key计算两者的相似性或者相关性;第二个阶段对第一阶段的原始分值进行归一化处理;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值