第六章树和二叉树作业1—二叉树(函数和编程题)

一、函数题

1、求二叉树高度

本题要求给定二叉树的高度。

函数接口定义:

int GetHeight( BinTree BT );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

要求函数返回给定二叉树BT的高度值。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef char ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

BinTree CreatBinTree(); /* 实现细节忽略 */
int GetHeight( BinTree BT );

int main()
{
    BinTree BT = CreatBinTree();
    printf("%d\n", GetHeight(BT));
    return 0;
}

/* 你的代码将被嵌在这里 */
输出样例(对于图中给出的树):

在这里插入图片描述

4

答案

int GetHeight(BinTree BT)
{
    int hl=0,hr=0;
    if(!BT) return 0;
    else
    {
        hl=GetHeight(BT->Left);
        hr=GetHeight(BT->Right);
        return (hl>hr?hl:hr)+1;
    }
}

2、二叉树的遍历

本题要求给定二叉树的4种遍历。

函数接口定义:

void InorderTraversal( BinTree BT );
void PreorderTraversal( BinTree BT );
void PostorderTraversal( BinTree BT );
void LevelorderTraversal( BinTree BT );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

要求4个函数分别按照访问顺序打印出结点的内容,格式为一个空格跟着一个字符。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef char ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

BinTree CreatBinTree(); /* 实现细节忽略 */
void InorderTraversal( BinTree BT );
void PreorderTraversal( BinTree BT );
void PostorderTraversal( BinTree BT );
void LevelorderTraversal( BinTree BT );

int main()
{
    BinTree BT = CreatBinTree();
    printf("Inorder:");    InorderTraversal(BT);    printf("\n");
    printf("Preorder:");   PreorderTraversal(BT);   printf("\n");
    printf("Postorder:");  PostorderTraversal(BT);  printf("\n");
    printf("Levelorder:"); LevelorderTraversal(BT); printf("\n");
    return 0;
}
/* 你的代码将被嵌在这里 */

输出样例(对于图中给出的树):
在这里插入图片描述

Inorder: D B E F A G H C I
Preorder: A B D F E C G H I
Postorder: D E F B H G I C A
Levelorder: A B C D F G I E H

答案

void InorderTraversal( BinTree BT )
{
    if(BT)
    {
        InorderTraversal(BT->Left);
        printf(" %c",BT->Data);
        InorderTraversal(BT->Right);
    }
}

void PreorderTraversal( BinTree BT )
{
    if(BT)
    {
        printf(" %c",BT->Data);
        PreorderTraversal(BT->Left);
        PreorderTraversal(BT->Right);
    }
}

void PostorderTraversal ( BinTree BT )
{
    if(BT)
    {
        PostorderTraversal(BT->Left);
        PostorderTraversal(BT->Right);
        printf(" %c",BT->Data);
    }
}

void LevelorderTraversal( BinTree BT )//层序遍历
{
        BinTree q[100];
        BinTree p;
        int head=0,tail=0;
        if(BT)
        {
            q[tail++]=BT;
            while(tail!=head)
            {
                p=q[head++];
                printf(" %c",p->Data);
                if(p->Left)     q[tail++]=p->Left;
                if(p->Right)    q[tail++]=p->Right;
            }
        }
}

3、先序输出叶结点

本题要求按照先序遍历的顺序输出给定二叉树的叶结点。

函数接口定义:

void PreorderPrintLeaves( BinTree BT );

其中BinTree结构定义如下:

typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

函数PreorderPrintLeaves应按照先序遍历的顺序输出给定二叉树BT的叶结点,格式为一个空格跟着一个字符。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef char ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

BinTree CreatBinTree(); /* 实现细节忽略 */
void PreorderPrintLeaves( BinTree BT );

int main()
{
    BinTree BT = CreatBinTree();
    printf("Leaf nodes are:");
    PreorderPrintLeaves(BT);
    printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输出样例(对于图中给出的树):

在这里插入图片描述

Leaf nodes are: D E H I

答案

void PreorderPrintLeaves( BinTree BT )
{
    if(BT)
    {
        if(BT->Left==NULL&&BT->Right==NULL)
        {
            printf(" %c",BT->Data);
        }
        PreorderPrintLeaves(BT->Left);
        PreorderPrintLeaves(BT->Right);
    }
}

二、编程题

1、根据后序和中序遍历输出先序遍历

本题要求根据给定的一棵二叉树的后序遍历和中序遍历结果,输出该树的先序遍历结果。

输入格式:
第一行给出正整数N(≤30),是树中结点的个数。随后两行,每行给出N个整数,分别对应后序遍历和中序遍历结果,数字间以空格分隔。题目保证输入正确对应一棵二叉树。

输出格式:
在一行中输出Preorder:以及该树的先序遍历结果。数字间有1个空格,行末不得有多余空格。

输入样例:

7
2 3 1 5 7 6 4
1 2 3 4 5 6 7

输出样例:

Preorder: 4 1 3 2 6 5 7

答案

#include <bits/stdc++.h>

using namespace std;

#define OK 1
#define ERROR 0
#define TRUE 1
#define FALSE 0
#define OVERFLOW -2

typedef int TElemType;

typedef struct BiTNode
{
    TElemType data;
    struct BiTNode *lchild,*rchild;
} BiTNode,*BiTree;

BiTree Build(int *in,int *post,int n)//第一个参数是中序序列的起始位置,第二个参数是后序序列的起始位置,n是长度
{
    if(n<=0) return NULL;//返回值注意了;//如果长度小于等于0,直接返回即可
    int *p=in;//定义一个指向in的指针
    while(p)//找到根节点在中序中的位置
    {
        if(*p==*(post+n-1))  break;
        else p++;
    }
    BiTree T=(BiTree)malloc(sizeof(BiTNode));
    if(!T) exit(OVERFLOW);
    T->data=*p;
    int len=p-in;
    T->lchild=Build(in,post,len);
    T->rchild=Build(p+1,post+len,n-len-1);
    return T;
}

void PreTree(BiTree T)
{
    if(T)
    {
        printf(" %d",T->data);
        PreTree(T->lchild);
        PreTree(T->rchild);
    }
}
int main()
{
    int n;
    scanf("%d",&n);
    int in[31];
    int post[31];
    for(int i=0; i<n; i++)
        scanf("%d",&post[i]);
    for(int i=0; i<n; i++)
        scanf("%d",&in[i]);
    printf("Preorder:");
    PreTree(Build(in,post,n));
    return 0;
}

解析
1、因为,已经知道后序遍历的最后一个就是根节点,所以,可以借助这个特性,与中序做对比,用另外一个指针在中序上从头开始移动,由此可以找到根节点

2、找到根节点之后,就可以清楚的看到左子树和右子树,之后,新建结点,这个结点就放入根节点

3、之后,按照同样的步骤,先建立左子树,后建立右子树。

4、然后再按照先序遍历的方式,输出二叉树。

1. 一棵二叉树顺序存储情况如下: 中,度为2的结点数为( )。 A.1 B.2 C.3 D.4 2. 一棵“完全二叉树结点数为25,高度为( )。 A.4 B.5 C.6 D.不确定 3.下列说法中,( )是正确的。 A. 二叉树就是度为2的 B. 二叉树中不存在度大于2的结点 C. 二叉树是有序 D. 二叉树中每个结点的度均为2 4.一棵二叉树的前序遍历序列为ABCDEFG,它的中序遍历序列可能是( )。 A. CABDEFG B. BCDAEFG C. DACEFBG D. ADBCFEG 5.线索二叉树中的线索指的是( )。 A.左孩子 B.遍历 C.指针 D.标志 6. 建立线索二叉树的目的是( )。 A. 方便查找某结点的前驱或后继 B. 方便二叉树的插入与删除 C. 方便查找某结点的双亲 D. 使二叉树的遍历结果唯一 7. 有abc三个结点的右单枝二叉树顺序存储结构应该用( )示意。 A. a b c B. a b ^ c C. a b ^ ^ c D. a ^ b ^ ^ ^ c 8. 一颗有2046个结点的完全二叉树的第10层上共有( )个结点。 A. 511 B. 512 C. 1023 D. 1024 9. 一棵完全二叉树一定是一棵( )。 A. 平衡二叉树 B. 二叉排序 C. 堆 D. 哈夫曼 10.某二叉树中序遍历序列和后序遍历序列正好相反,则该二叉树一定是( )的二叉树。 A.空或只有一个结点 B.高度等于其结点数 C.任一结点无左孩子 D.任一结点无右孩子 11.一棵二叉树顺序存储情况如下: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A B C D E 0 F 0 0 G H 0 0 0 X 结点D的左孩子结点为( )。 A.E B.C C.F D.没有 12.一棵“完全二叉树结点数为25,高度为( )。 A.4 B.5 C.6 D.不确定 二、填空题(每空3分,共18分)。 1. 的路径长度:是从根到每个结点的路径长度之和。对结点数相同的来说,路径长度最短的是 完全 二叉树。 2. 在有n个叶子结点的哈夫曼中,总结点数是 2n-1 。 3. 在有n个结点的二叉链表中,值为非空的链域的个数为 n-1 。 4. 某二叉树中序遍历序列和后序遍历序列正好相反,则该二叉树一定是 任一结点无左孩子 的二叉树。 5. 深度为 k 的二叉树最多有 个结点,最少有 k 个结点。 三、综合题(共58分)。 1. 假定字符集{a,b,c,d,e,f }中的字符在电码中出现的次数如下: 字符 a b c d e f 频度 9 12 20 23 15 5 构造一棵哈夫曼(6分),给出每个字符的哈夫曼编码(4分),并计算哈夫曼的加权路径长度WPL(2分)。 (符合WPL最小的均为哈夫曼,答案不唯一) 哈夫曼编码: 2. 假设用于通信的电文由字符集{a,b,c,d,e,f,g}中的字符构成,它们在电文中出现的频率分别为{0.31,0.16,0.10,0.08,0.11,0.20,0.04}。要求: (1)为这7个字符设计哈夫曼(6分)。 (2)据此哈夫曼设计哈夫曼编码(4分)。 (3)假设电文的长度为100字符,使用哈夫曼编码比使用3位二进制数等长编码使电文总长压缩多少?(4分) (1) 为这7个字符设计哈夫曼为(符合WPL最小的均为哈夫曼,答案不唯一): (2) 哈夫曼编码为: a:01;b:001;c:100;d:0001;e:101;f:11;g:0000 (3) 假设电文的长度为100字符,使用哈夫曼编码比使用3位二进制数等长编码使电文总长压缩多少? 采用等长码,100个字符需要300位二进制数,采用哈夫曼编码发送这100个字符需要261二进制位,压缩了300-261=39个字符。压缩比为39/300=13%。 3. 二叉数T的(双亲到孩子的)边集为: { <A,B>, <A,C>, <D,A>, <D,E>, <E,F>, <F,G> } 请回答下列问题: (1)T的根结点(2分): (2)T的叶结点(2分): (3)T的深度(2分): (4)如果上述列出边集中,某个结点只有一个孩子时,均为其左孩子;某个结点有两个孩子时,则先列出了连接左孩子的边后列出了连接右孩子的边。画出该二叉树其及前序线索(6分)。 (1)T的根结点 (2)T的叶结点 : (3)T的深度 : (4)该二叉树其及前序线索为: 4.现有以下按前序和中序遍历二叉树的结果: 前序:ABCEDFGHI 中序:CEBGFHDAI 画出该二叉树的逻辑结构图(5分),并在图中加入中序线索(5分)。 5.有电文:ABCDBCDCBDDBACBCCFCDBBBEBB。 用Huffman构造电文中每一字符的最优通讯编码。画出构造的哈夫曼,并给出每个字符的哈夫曼编码方案。(符合WPL最小的均为哈夫曼,答案不唯一) (1)构造哈夫曼(6分): (2)哈夫曼编码方案(4分):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值